LAB 2-6

REGISTER DUMP MODULE

Write a module to print a register dump to the screen whenever it is called. The dump should be similar to the DEBUG register dump, as shown below.

Test the routine by calling it several times in one of your programs. Note that if you want to display the contents of CS and IP within a module, these values will have been changed when the module was called; therefore, the original values should be retrieved from the stack. Refer to Section 7.3 in the textbook to refresh your memory on how CS and IP are stored on the stack prior to subroutine calls.

There are many ways to approach this problem, but one way is to build a shell of each display line (shown above) in the data segment, plug in the register values when the module is called, and print it with the display function INT 21H Function 09. Part of the shell for the first line might look as follows:

LINE_1

DB
'AX='

REG_AX
DB
4 DUP (' 0')

DB
' BX='

REG_BX
DB
4 DUP (' 0')

...

...

REG_DI
DB
4 DUP (' 0')

DB
'$'
;terminates display

The challenge in this program is to transform a register value, which is a hex word such as "12BC", into its ASCII representation, in this case "31 32 42 43". One way is to first save the register (let's assume that it is AX) in a memory location or on the stack. Then mask off all but the first hex digit of AX, rotate that digit to the least significant digit position, and use it as an offset into an XLAT table to get its ASCII equivalent. That ASCII code then could be stored at REG_AX. Next, restore the original value of AX, mask off all but the second digit, rotate that digit to the least significant digit, gets its hex equivalent from the table, and store it at REG_AX+1. This must be done for the remaining two digits as well to translate the hex word into 4 ASCII bytes. Of course, any registers that you would use for the rotate, XLAT, or other instructions would have to be saved on the stack to preserve the values they had when the routine was called.

