LAB 1-20

ADDITION AND SUBTRACTION MODULES

OBJECTIVE

To write external subroutines which can be linked with other object modules

REFERENCES

Mazidi, Volumes I & II: Chapter 7, Sections 7.1 through 7.2

MATERIALS

80x86 IBM (or compatible) computer

MASM (or compatible) assembler

ACTIVITY 1

Write, assemble, run, and analyze a program that calls modules which perform the tasks outlined below.

ACTIVITY 2

Write a module to find the total sum of many individual bytes and store the word‑sized result. The choice of the number of bytes and the data is up to you, but the total sum must be more than one byte.

ACTIVITY 3

Write a module to find the sum of two multibyte numbers. Each number should be of 8‑byte size. The addition should be done one byte at a time. 

ACTIVITY 4

Write a module to find the total sum of many individual words and store the result which will be a double word. The choice of the number of words and the data is up to you, but the total sum must be more than one word.

ACTIVITY 5

Write a module to find the sum of two multibyte numbers. Each number should be of 8‑byte size. The addition should be done one word at a time. 

 

ACTIVITY 6

Write a module to subtract one multibyte (8‑byte) number from another and save the result.    

ACTIVITY 7

Write a module to add two BCD numbers and store the result in BCD. 

ACTIVITY 8

Write a module to subtract two BCD numbers and store the result in BCD. 

Save this program because it will be used in Lab 1-21.

WORKSHEET QUESTION

1. Write down the link command you used to link the modules together.  How many modules did you use in how many separate files?  Were your modules FAR or NEAR?  State the differences in NEAR and FAR modules in terms of how the CALL instruction is affected.  Unassemble the CALL instruction for the NEAR call and print it out. Change the modules to NEAR if you  used FAR, or to FAR if you used NEAR, then reassemble and relink the program.   Unassemble the CALL instruction for the FAR call and print it out.  Did the NEAR and FAR CALL instructions have the same machine code?  What differences in the operands did you notice?

