LAB 1-6

USING BORLAND TURBO DEBUGGER

OBJECTIVE

 To debug a program using Borland's Turbo Debugger program

REFERENCES

Mazidi, Volumes I & II: Chapter 2, Section 2.3

MATERIALS

80x86 IBM (or compatible) computer

Borland's Turbo Debugger (version 3.0 used here)

In this lab we show some of the basic commands of Turbo Debugger. A complete description of Turbo Debugger can be found in Borland's manuals. The information provided here is enough to allow you to debug simple programs.

Setting up a program for Turbo Debugger

The Assembly language program should be assembled with the /ZI option:

C>TASM /ZI TEST.ASM

and linked with the /V option:

C>TLINK /V TEST1.OBJ

Note that when using Borland's Turbo Assembler and Link programs, the commands are TASM and TLINK, not MASM and LINK. Using the options shown above will enable you to look at the source code in Turbo Debugger, but the debugger can be used with files created without the above assemble/link options.

Entering Turbo Debugger

 The following shows how to enter Turbo Debugger to debug TEST.EXE

C>TD TEST

The View menu

This drop down menu provides several windows into the system. For example, if you select the Register option, a window will appear which displays the contents of the registers. If you select the Dump option, a memory dump of the data segment will appear. Other useful views are the Variables window and the Breakpoints window. The Variables command shows the value of a variable. To set up a watch on a variable, click on the variable in the program, then hit Ctrl‑F7. Once the windows are displayed on the screen, you can move them around on the screen by using the mouse. To exit the window, double click on the little green box in the top left corner.

The Run menu

This menu provides several run options. The Run option (also available by hitting F9) runs the program until a breakpoint is reached or until the end of the program. Go to cursor allows you to set up a spontaneous breakpoint by executing the program until the line with the current cursor position. F7 can be used to single‑step through the program. F8 will single‑step through the program, but will skip over procedure and macro calls. If you want to start the program from the beginning, hit Ctrl‑F2 and the program pointer will be set to the beginning of the program. If your program has screen output, you can view it by toggling Alt‑F5.

The Breakpoints menu

The Toggle command (also available by hitting F2) allows you to toggle a breakpoint on and off the line of code at the current cursor position. You can set up as many breakpoints as you need by moving the cursor to the desired line (by the mouse or the up/down arrow keys), then hitting F2. To remove all breakpoints, select the "Delete all" option from the Breakpoint menu.

The Data menu

The Inspect command in the Data menu is useful for watching variables. After you select Inspect, you will be prompted for the variable names you wish to inspect. Be aware that this command may be case sensitive; type the variables in the same case as they appear in the program.

The CPU window

This extremely powerful window is available in the View drop down menu. It has so many features that it is discussed here under a separate heading. In fact, this option allows you such access to the CPU that it is scary! You can examine and alter your code as well as the data segment. The CPU window is composed of five panes, containing the following: unassembled code with source, registers, flags, data dump, stack dump. Within any window (or pane), hitting Alt‑F10 pops up a menu allowing you to make changes to the window or pane.

In the Code pane of the CPU window, both the Assembly language instructions and the machine code are displayed. While in this pane, you can use the F7 or F8 single‑step commands, as well as the breakpoint and run commands from the menus. In the Alt‑F10 local menu, the assemble command will let you assemble an instruction, replacing the one at the current cursor position.

In the Register pane of the CPU window, the registers are all displayed in hex. The Alt‑F10 local menu can be used to increment, decrement, reset, or change the value of any register. Register values can also be changed by highlighting them and typing in a new value.

The flags pane also allows you to change the value of the flag bits which are indicated by the first letter of their name (e.g., c = carry, s = sign).

The data pane of the CPU window dumps memory from any of the four segments of your program. You can alter the data by highlighting it and then typing in the new data. The Alt‑F10 local menu provides many options such as searching for a character string, setting a block of memory to a value, changing the display format to byte, word, or other options.

ACTIVITY 1

Prepare Program 2‑2 in the textbook for debugging by assembling and linking the program with the options shown in this lab. Enter Turbo Debugger, use the View menu to set up a register window, and a CPU window. Single‑step through the program, then examine the result data in the data segment. See Worksheet question 1.

ACTIVITY 2

Change the data to be added in the data segment to these 4 words: 1234, 0F24, 032B, 1122. Then execute the program with the new data and verify that the correct result was obtained. See Worksheet question 2.

ACTIVITY 3

Experiment with the CPU window by changing register values, data segment values, and program instructions.

WORKSHEET QUESTIONS

1. Use Ctrl‑PrtScreen to print the screen at the point in your trace where the result is loaded into SUM in Activity 1.

2. Describe how you entered the data, ran the program, and verified the results for Activity 2.

3. Give a summary of the features of Turbo Debugger which you found most useful. Compare it with another debugging tool such as DEBUG or CodeView.
