LAB 1-5

USING MICROSOFT CODEVIEW

OBJECTIVE

To debug a program using Microsoft's CodeView debugger

REFERENCES

Mazidi, Volumes I & II: Chapter 2, Section 2.3

MATERIALS

80x86 IBM (or compatible) computer

MASM (or compatible) assembler

Microsoft's CodeView

In this lab we show some of the basic commands of CodeView. A complete description of CodeView can be found in Microsoft's manuals. The information provided here is enough to allow you to debug simple programs.

Setting up a program for CodeView

In order to have symbolic information available in CodeView, the Assembly language program must have been assembled with the /ZI option:

C>MASM PROG1.ASM /ZI

and linked with the /CO option:

C>LINK PROG1.OBJ /CO

Using these options will enable you to look at the source code in CodeView. CodeView can be used with files created without the above assemble/link options.

Entering CodeView

 The following shows how to enter CodeView to debug PROG1.EXE

C>CV PROG1

CodeView can also be used for any ".exe" file generated with C, Pascal, or other compilers.

The following is a list of some of the more commonly used commands that can be typed in at the > prompt. Many of these commands can be initiated from menus with the use of a mouse.

r
displays register values at bottom of screen, similar to DEBUG

a
assemble instructions into program

db
display bytes of memory

dw
display words of memory

eb
enter bytes in memory

g
go (execute) until breakpoint

p
execute current source line (skips routines and interrupts)

q
quit

t
trace (execute) current source line (does not skip routines and interrupts)

w
watch (variable or expression)

Following are some frequently used Function Keys in CodeView

F2
toggle register display on and off

F3
toggle between Assembly and source listing

F4
toggle between output and program screen

F5
execute until breakpoint

F6
toggle cursor between program and command prompt ">>"

F8
single‑step (including CALL and INT subroutines)

F9
manage breakpoints

F10
single‑step (excluding CALL and INT subroutines)

Displaying and entering data

Data can be displayed in byte (DB) or word (DW) format. These two commands display the data in hex. CodeView also allows you to display the data in decimal with the DU command. A number can follow the D command to tell CodeView what offset to begin displaying at. Repeatedly entering a D command will go through the data segment, chunk by chunk.

>DB 0 36
displays data segment from offset 0 for 36 bytes

>DU 0 36
displays decimal equivalents of bytes from offset 0 to 36

>DW 0 36
displays words from offset 0 to 36

Notice that the numbers entered above are in decimal, not hex. For example, "DB 0 36" will dump 36 bytes, which is equivalent to 24 hex. Data can also be entered as hex bytes (EB) or words (EW), or as decimal integers (EI). The number following the E command indicates at what offset to begin entering the data. A few examples are:

>EB 16 0 0 0

enters three 0 bytes starting at offset 16

>EW 16 0 0 0

enters three 0 words starting at offset 16

>EA 16 32 32 32
enters three ASCII blanks at offset 16

>EI 0 ‑10 10 20

enters integers (‑10, 10, 20) at offset 0

Watch commands

The watch commands are very useful tools in CodeView. They can be typed in as commands on the command line or can be set up by using the "Watch" menu at the top of the CodeView screen. Watch commands set up a watch box at the top of the screen where you can watch data change as the program executes. Some examples will help show how watch commands can be used.

>WB DS:0 L16

this will watch the data segment from offset 0 for 16 bytes

>W? DATA_1

this will watch data item named DATA_1

>WP? SUM > 0
this will watch until data item SUM is greater than 0

The above three commands show some of the most useful aspects of the watch command. The first command showed the watch command being used to dump specific offset values of the data segment. The second command sets up a watch for a specific variable. This command will only work if the program was assembled and linked with the options shown on the first page of this lab. The third command showed how to set up breakpoints in the program. If the go ">G" command is entered after this command, the program will execute until the variable SUM is greater than zero, or until the program terminates.

Helpful hints

1. As the program executes, it scrolls upwards off the screen. At times you may wish to look at the code that has already scrolled off the screen. In this case, the U command could be used. For example, if you use the U0 command to unassemble starting at offset 0, this will get you back to the beginning of the program.

2. If you try to display the data segment before it has been set up in the program "MOV DS,AX", you may have some difficulty. Therefore, go ahead and single‑step through the program past those initial housekeeping instructions before trying to look at the data segment.

ACTIVITY 1

Prepare Program 2‑2 in the textbook for debugging by assembling and linking the program with the options shown above. Enter CodeView as shown in this lab, and hit F2 to display the registers. Now at the ">" prompt, use the r command to display the register values at the bottom of the screen. Experiment with the r (register), d (data), and e (enter) commands. These three commands (and many others) work similarly to the way they work in DEBUG.

ACTIVITY 2

Single‑step through the program, then examine the result data in the data segment. See Worksheet question 1.

ACTIVITY 3

Change the data to be added in the data segment by using the e command to enter the 4 words: 1234, 0F24, 032B, 1122. Then execute the program with the new data and verify that the correct result was obtained. See Worksheet question 2.

WORKSEET QUESTIONS

1. Use Ctrl‑PrtScreen to print the screen at the point in your trace where the result is loaded into SUM. List the commands you used to verify that the correct data was placed in the data segment.

2. List the series of commands you used to enter the data, run the program, and verify the results.

3. Give a summary of the features of CodeView which you found most useful. Compare it with another debugging tool such as DEBUG.
