
C Programming in AVR Studio using
WinAVR

Sepehr Naimi
(BIHE)

2010-06-08

 2

Introduction
This tutorial will teach you how to write, compile, and trace C programs in AVR

Studio. For more information, you can see AVR Studio’s Help and see the WinAVR site.

Figure 1: WinAVR website

 3

Downloading and Installing AVR Studio
1. First download AVR Studio. You can download the last version of the AVR

Studio IDE from the following web address:
http://www.atmel.com/dyn/Products/tools_card.asp?tool_id=2725

Figure 2: Downloading the Last Version of AVR Studio

2. Execute the downloaded setup file. The installation of the software is straight

forward, and it can be done by pressing the Next and Install buttons a few times.
Now, the AVR Studio IDE is ready to be used.

 4

Downloading and installing WinAVR
3. Download the WinAVR software from the following site:

http://sourceforge.net/projects/winavr/files/

Figure 3: Downloading the Last Version of WinAVR

4. Install the WinAVR software by executing the downloaded file.

Opening AVR Studio
5. Open the AVR Studio from the start menu.

Figure 4: Running AVR Studio

 5

Creating a new Project
6. Click on the New Project button.

Figure 5: Welcome window

7. Do the followings:

• In the left list, choose AVR GCC.
• Choose a name for your project (e.g. firstProgram) by typing the name in

the text field below the Project name.
• You can change the location where the files of the project will be saved by

clicking on the … button, if you want.
• Press the Next button.

Figure 6: Name the project

 6

8. Choose AVR Simulator from the left list and ATmega32 from the right list and
press Finish.

Figure 7: Choosing the microcontroller

 7

Writing the first program
9. Type or copy the following program:

#include <avr/io.h>

int main ()
{
 unsigned char i = 0;

 DDRA = 0xFF; //port A as output
 DDRB = 0xFF; //port B as output
 DDRC = 0xFF; //port C as output

 PORTA = 0xAA;

 while (1)
 {
 PORTC = PORTC ^ 0x01; //toggle PORTC.0
 PORTB = i;
 i++;
 }
 return 0;
}

Figure 8: Writing a program

 8

Saving
10. Save the program by pressing Ctrl + S or choosing Save from the File menu

Figure 9: The File menu

Compiling
11. Press F7 or select Build from the Build menu or click on the build icon in the

toolbar.

Figure 10: Building

12. See the Build window. The window shows if your program has syntax error or

not. By looking at the window, you can see the amount of memory which is used
by your program, as well.

 9

Debugging
13. Select Start Debugging from the Debug menu. A yellow arrow appears next to

the first instruction of the program and shows the next instruction which will be
executed.

Figure 11: Debug menu

Tracing
14. To execute the next instruction press F10 or select the Step Over from the Debug

menu. There are also another tracing tools in the Debug menu, as well:
• Step Into: It is executes the next instruction, like Step Over. The only

difference between them is that, if the next instruction is a function call,
the Step into, goes to the function; but Step Over executes the function
completely and goes to the next instruction.

• Step Out: If you are in a function, Step Out executes the program up to the
end of the function.

• For more information about the Tracing tools you can see the AVR
Studio’s help.

 10

Watching
See Figure 12. In this part you learn to use the different tools to watch the program.

Figure 12: AVR Studio environment

Figure 13: Processor

• Processor: It shows the
contents of the registers which are
related to the CPU: general
purpose registers (R0 to R31), PC,
SP (Stack Pointer), status Register
(SREG), X, Y, and Z registers. See
Figure 13. Cycle Counter counts
the number of machine cycles
which have been passed and the
Stop Watch represents how much
time has elapsed. You can use the
parameters to measure the
execution time of your program.
You can reset them as well, by
right clicking on them and
choosing reset. (Figure 15)

• I/O View: In this window, you

can see the value of the different
I/O registers. See Figure 14; in the
upper box, the related I/O registers
are grouped. Click on PORTC and
see the values of PORTC and
DDRC.

Figure 14: I/O View

Figure 15: Reset Stopwatch

 11

In Figure 12, you saw some icons in the toolbar which are
numbered as 3, 4, and 5 (Figure 16). The use of them is
discussed in this page. Figure 16: Some watching tools

• Watch: Click on the tool which
is numbered as 3 in Figure 16.
The watch window appears
(Figure 17); in this window you
can see the value of different
variables at the correct time.
Double click under the Name
title and type i and then press
Enter; the value of the i will be
displayed, and if you continue
tracing by pressing the F10
button (Step Over) the changes
of i will be displayed.

Figure 17: Watch

• Register: Click on the tool which is numbered as 4 in

Figure 12, the Register window will be displayed.
This window shows the contents of all of the general
purpose registers, at the current time. You can close
the window by clicking on the X which is displayed
on the top right corner of the window.

Figure 18: Register

• Memory: Click on the tool
which is numbered as 5 in
Figure 16. The Memory
window appears (Figure 19); in
this window you can see the
contents of different locations
of memory, at the correct time.
In the window:

1) The gray column shows the
address of the first location in
each row. For example, in the
picture, location $60 contains 1,
$61 contains 2 and so on.

Figure 19: Memory

 12

2) We can choose which of the
memories to be displayed using
the comboBox on the top left
corner of the window:

 Data: SRAM memory
 EEPROM: EEPROM
 I/O: I/O registers
 Program: Flash Memory
 Register: general purpose

registers
Figure 20: Memory

• Disassembler: This window shows the contents of the flash memory. In the
window:

1) The black texts display our program.
2) Below each of the instructions of our program, its assembly equivalent

is mentioned.
3) The gray numbers at the middle of the lines mention the machine code

of each instruction. For example, according to Figure 21, the machine
equivalent of OUT 0x17,R24 is BB87.

4) The last column describes what the assembly instruction does. For
example as you see in Figure 21, OUT is Out to I/O location, or JMP
is Jump.

5) The gray numbers at the beginning of each line, mention at which
location of flash memory each of the instructions are located. For
example, in Figure 21, “OUT 0x14,R24” is located in address 004C.

6) The yellow arrow points to the next instruction which will be
executed.

Figure 21: Disassembler

