
SECTION 8.2: AVR FUSE BITS

There are some features of the AVR that we can choose by programming

the bits of fuse bytes. These features will reduce system cost by eliminating any

need for external components.

ATmega32 has two fuse bytes. Tables 8-6 and 8-7 give a short description

of the fuse bytes. Notice that the default values can be different from production

to production and time to time. In this section we examine some of the basic fuse

bits. The Atmel website (http://www.atmel.com) provides the complete description

of fuse bits for the AVR microcontrollers. It must be noted that if a fuse bit is incor-

rectly programmed, it can cause the system to fail. An example of this is changing

the SPIEN bit to 1, which disables SPI programming mode. In this case you will

not be able to program the chip any more! Also notice that the fuse bits are ‘0’ if

they are programmed and ‘1’ when they are not programmed.

In addition to the fuse bytes in the AVR, there are 4 lock bits to restrict

access to the Flash memory. These allow you to protect your code from being

copied by others. In the development process it is not recommended to program

lock bits because you may decide to read or verify the contents of Flash memory.

Lock bits are set when the final product is ready to be delivered to market. In this

book we do not discuss lock bits. To study more about lock bits you can read the

data sheets for your chip at http://www.atmel.com.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 1

Table 8-6: Fuse Byte (High)

Fuse High Bit Description Default Value

Byte No.

OCDEN 7 Enable OCD 1 (unprogrammed)

JTAGEN 6 Enable JTAG 0 (programmed)

SPIEN 5 Enable SPI serial program and 0 (programmed)

data downloading

CKOPT 4 Oscillator options 1 (unprogrammed)

EESAVE 3 EEPROM memory is preserved 1 (unprogrammed)

through the chip erase

BOOTSZ1 2 Select boot size 0 (programmed)

BOOTSZ0 1 Select boot size 0 (programmed)

BOOTRST 0 Select reset vector 1 (unprogrammed)

Table 8-7: Fuse Byte (Low)

Fuse High Bit Description Default Value

Byte No.

BODLEVEL 7 Brown-out detector trigger level 1 (unprogrammed)

BODEN 6 Brown-out detector enable 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)

SUT0 4 Select start-up time 0 (programmed)

CKSEL3 3 Select clock source 0 (programmed)

CKSEL2 2 Select clock source 0 (programmed)

CKSEL1 1 Select clock source 0 (programmed)

CKSEL0 0 Select clock source 1 (unprogrammed)

Fuse bits and oscillator clock

source

As you see in Figure 8-4, there are

different clock sources in AVR. You can

choose one by setting or clearing any of the

bits CKSEL0 to CKSEL3.

CKSEL0–CKSEL3
The four bits of CKSEL3, CKSEL2,

CKSEL1, and CKSEL0 are used to select the

clock source to the CPU. The default choice

is internal RC (0001), which uses the on-chip

RC oscillator. In this option there is no need

to connect an external crystal and capacitors

to the chip. As you see in Table 8-8, by

changing the values of CKSEL0–CKSEL3

we can choose among 1, 2, 4, or 8 MHz inter-

nal RC frequencies; but it must be noted that

using an internal RC oscillator can cause

about 3% inaccuracy and is not recommend-

ed in applications that need precise timing.

The external RC oscillator is another

source to the CPU. As you see in Figure 8-5, to

use the external RC oscillator, you have to con-

nect an external resistor and capacitors to the

XTAL1 pin. The values of R and C determine

the clock speed. The frequency of the RC

oscillator circuit is estimated by the equation

f = 1/(3RC). When you need a variable clock

source you can use the external RC and replace the resistor with a potentiometer.

By turning the potentiometer you will be able to change the frequency. Notice that

the capacitor value should be at least 22 pF. Also, notice that by programming the

CKOPT fuse, you can enable an internal 36 pF capacitor between XTAL1 and

GND, and remove the external capacitor. As you see in Table 8-9, by changing the

values of CKSEL0–CKSEL3, we can choose different frequency ranges.

CHAPTER 8: AVR HARDWARE CONNECTION 2

Table 8-8: Internal RC

Oscillator Operation Modes

CKSEL3...0 Frequency

0001 1 MHz

0010 2 MHz

0011 4 MHz

0100 8 MHz

Table 8-9: External RC

Oscillator Operation Modes

CKSEL3...0 Frequency (MHz)

0101 <0.9

0110 0.9–3.0

0111 3.0–8.0

1000 8.0–12.0

External RC
Oscillator

External
Clock

Crystal
Oscillator

Low-Frequency
Crystal Oscillator

Calibrated RC
Oscillator

Clock
Multiplexer

Figure 8-4. ATmega32 Clock Sources

Figure 8-5 External RC

By setting CKSEL0...3 bits to 0000, we can use an external clock source

for the CPU. In Figure 8-6a you see the connection to an external clock source.

The most widely used option is to connect the XTAL1 and XTAL2 pins to

a crystal (or ceramic) oscillator, as shown in Figure 8-6b. In this mode, when

CKOPT is programmed, the oscillator output will oscillate with a full rail-to-rail

swing on the output, causing a more powerful clock signal. This is suitable when

the chip drives a second clock buffer or operates in a very noisy environment. As

you see in Table 8-10, this mode has a wide frequency range. When CKOPT is not

programmed, the oscillator has a smaller output swing and a limited frequency

range. This mode cannot be used to drive other clock buffers, but it does reduce

power consumption considerably. There are four choices for the crystal oscillator

option. Table 8-10 shows all of these choices. Notice that mode 101 cannot be

used with crystals, and only ceramic resonators can be used. Example 8-1 shows

the relation between crystal frequency and instruction cycle time.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 3

XTAL2

XTAL1

GND

NC

EXTERNAL

OSCILLATOR

SIGNAL

Figure 8-6a. XTAL1 Connection to an

External Clock Source

XTAL2

XTAL1

GND

C2

C1

Figure 8-6b. XTAL1–XTAL2

Connection to Crystal Oscillator

22 pF

22 pF

Table 8-10: ATmega32 Crystal Oscillator Frequency Choices and Capacitor

Range

CKOPT CKSEL3...1 Frequency (MHz) C1 and C2 (pF)

1 101 0.4–0.9 Not for crystals

1 110 0.9–3.0 12–22

1 111 3.0–8.0 12–22

0 101, 110, 111 More than 1.0 12–22

Find the instruction cycle time for the ATmega32 chip with the following crystal oscillators

connected to the XTAL1 and XTAL2 pins.

(a) 4 MHz (b) 8 MHz (c) 10 MHz

Solution:

(a) Instruction cycle time is 1/(4 MHz) = 250 ns

(b) Instruction cycle time is 1/(8 MHz) = 125 ns

(c) Instruction cycle time is 1/(10 MHz) = 100 ns

Example 8-1

Fuse bits and reset delay

The most difficult time for a system is during power-up. The CPU needs

both a stable clock source and a stable voltage level to function properly. In AVRs,

after all reset sources have gone inactive, a delay counter is activated to make the

reset longer. This short delay allows the power to become stable before normal

operation starts. You can choose the delay time through the SUT1, SUT0, and

CKSEL0 fuses. Table 8-11 shows start-up times for the different values of SUT1,

SUT0, and CKSEL fuse bits and also the recommended usage of each combina-

tion. Notice that the third column of Table 8-11 shows start-up time from power-

down mode. Power-down mode is not discussed in this book.

Brown-out detector

Occasionally, the power source provided to the VCC pin fluctuates, caus-

ing the CPU to malfunction. The ATmega family has a provision for this, called

brown-out detection. The BOD circuit compares VCC with BOD-Level and resets

the chip if VCC falls below the BOD-Level. The BOD-Level can be either 2.7 V

when the BODLEVEL fuse bit is one (not programmed) or 4.0 V when the

BODLEVEL fuse is zero (programmed). You can enable the BOD circuit by pro-

gramming the BODEN fuse bit. When VCC increases above the trigger level, the

BOD circuit releases the reset, and the MCU starts working after the time-out peri-

od has expired.

A good rule of thumb

There is a good rule of thumb for selecting the values of fuse bits. If you

are using an external crystal with a frequency of more than 1 MHz you can set the

CKSEL3, CKSEL2, CKSEL1, SUT1, and SUT0 bits to 1 (not programmed) and

clear CKOPT to 0 (programmed).

CHAPTER 8: AVR HARDWARE CONNECTION 4

Table 8-11: Startup Time for Crystal Oscillator and Recommended Usage

CKSEL0 SUT1...0 Start-Up Time Delay from Recommended

from Power-Down Reset (VCC = 5) Usage

0 00 258 CK 4.1 Ceramic resonator,

fast rising power

0 01 258 CK 65 Ceramic resonator,

slowly rising power

0 10 1K CK - Ceramic resonator,

BOD enabled

0 11 1K CK 4.1 Ceramic resonator,

fast rising power

1 00 1K CK 65 Ceramic resonator,

slowly rising power

1 01 16K CK - Crystal oscillator,

BOD enabled

1 10 16K CK 4.1 Crystal oscillator,

fast rising power

1 11 16K CK 65 Crystal oscillator,

slowly rising power

Putting it all together

Many of the programs we showed in the first seven chapters were intend-

ed to be simulated. Now that we know what we should write in the fuse bits and

how we should connect the ATmega32 pins, we can download the hex output file

provided by the AVR Studio assembler into the Flash memory of the AVR chip

using an AVR programmer.

We can use the following skeleton source code for the programs that we

intend to download into a chip. Notice that you have to modify the first line if you

use a chip other than ATmega32. As you can see in the comments, if you want to

enable interrupts you have to modify “.ORG 0”, and if you do not use call the

instruction in your code, you can omit the codes that set the stack pointer.

.INCLUDE "M32DEF.INC" ;change it according to your chip

.ORG 0 ;change it if you use interrupt
LDI R16,HIGH(RAMEND) ;set the high byte of stack pointer to
OUT SPH,R16 ;the high address of RAMEND
LDI R16,LOW(RAMEND) ;set the low byte of stack pointer to
OUT SPL,R16 ;low address of RAMEND

... ;place your code here

As an example, examine Program 8-1. It will toggle all the bits of Port B

with some delay between the “on” and “off” states.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 5

;Test Program 8-1: Toggling PORTB for the Atmega32
.INCLUDE "M32DEF.INC" ;using Atmega32
.ORG 0

LDI R16,HIGH(RAMEND) ;set up stack
OUT SPH,R16
LDI R16,LOW(RAMEND)
OUT SPL,R16
LDI R16,0xFF ;load R16 with 0xFF
OUT DDRB,R16 ;Port B is output

BACK:
COM R16 ;complement R16
OUT PORTB,R16 ;send it to Port B
CALL DELAY ;time delay
RJMP BACK ;keep doing this indefinitely

DELAY:
LDI R20,16

L1: LDI R21,200
L2: LDI R22,250
L3:

NOP
NOP
DEC R22
BRNE L3
DEC R21
BRNE L2

DEC R20
BRNE L1
RET

Program 8-1: Toggling Port B in Assembly

Toggle program in C

In Chapter 7 we covered C programming of the AVR using the AVR GCC

compiler. Program 8-2 shows the toggle program written in C. It will toggle all the

bits of Port B with some delay between the “on” and “off” states.

Review Questions

1. A given ATmega32-based system has a crystal frequency of 16 MHz. What is

the instruction cycle time for the CPU?

2. How many fuse bytes are available in ATmega32?

3. True or false. Upon power-up, both voltage and frequency are stable instantly.

4. The internal RC oscilator works for the frequency range of _____ to ______

MHz.

5. Which fuse bit is used to disable the BOD?

6. True or false. Upon power-up, the CPU starts working immediately.

7. What is the rule of thumb for ATmega32 fuse bits?

8. The brown-out detection voltage can be set at _______ or ______ by________

fuse bit.

9. True or false. The higher the clock frequency for the system, the lower the

power dissipation.

CHAPTER 8: AVR HARDWARE CONNECTION 6

#include <avr/io.h> //standard AVR header
#include <util/delay.h>

void delay_ms(int d);

int main(void)
{

DDRB = 0xFF; //Port B is output
while (1)
{ //do forever

PORTB = 0x55;
delay_ms(1000); //delay 1 second
PORTB = 0xAA;
delay_ms(1000); //delay 1 second

}
return 0;

}

void delay_ms(int d)
{

_delay_ms(d); //delay 1000 us
}

Program 8-2: Toggling Port B in C

SECTION 8.3: EXPLAINING THE HEX FILE FOR AVR

Intel Hex is a widely used file format designed to standardize the loading

(transferring) of executable machine code into a chip. Therefore, the loaders that

come with every ROM burner (programmer) support the Intel Hex file format. In

many Windows-based assemblers such as AVR Studio, the Intel Hex file is pro-

duced according to the settings you set. In the AVR Studio environment, the object

file is fed into the linker program to produce the Intel hex file. The hex file is used

by a programmer such as the AVRISP to transfer (load) the file into the Flash

memory. The AVR Studio assembler can produce three types of hex files. They are

(a) Intel Intellec 8/MDS (Intel Hex), (b) Motorola S-record, and (c) Generic. See

Table 8-12. In this section we will explain Intel Hex with some examples. We rec-

ommend that you do not use AVR GCC if you want to test the programs in this

section on your computer. It is better to use a simple .asm file like toggle.asm to

understand this concept better.

Analyzing the Intel Hex file

We choose the hex type of Intel Hex, Motorola S-record, or Generic by

using the command-line invocation options or setting the options in the AVR

Studio assembler itself. If we do not choose one, the AVR Studio assembler selects

Intel Hex by default. Intel Hex supports up to 16-bit addressing and is not appli-

cable for programs more than 64K bytes in size. To overcome this limitation AVR

Studio uses extended Intel Hex files, which support type 02 records to extend

address space to 1M. We will explain extended Intel Hex file format in this sec-

tion. Figure 8-10 shows the Intel Hex file of the test program whose list file is

given in Figure 8-8. Since the programmer (loader) uses the Hex file to download

the opcode into Flash, the hex file must provide the following: (1) the number of

bytes of information to be loaded, (2) the information itself, and (3) the starting

address where the information must be placed. Each record (line) of the Hex file

consists of six parts as follows:

:BBAAAATTHHHHH.......HHHHCC

The following describes each part:

1. “:” Each line starts with a colon.

2. BB, the count byte. This tells the loader how many bytes are in the line.

3. AAAA is for the record address. This is a 16-bit address. The loader places the

first byte of record data into this Flash location. This is the case in files that are

less than 64 KB. For files that are more than 64 KB the address field shows the

record address in the current segment.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 7

Table 8-12: Intel Hex File Formats Produced by AVR Studio

Format Name File Extension Max. ROM Address

Extended Intel Hex file .hex 20-bit address

Motorola S-record .mot 32-bit address

Generic .gen 24-bit address

4. TT is for type. This field is 00, 01, or 02. If it is 00, it means that there are more

lines to come after this line. If it is 01, it means that this is the last line and the

loading should stop after this line. If it is 02, it indicates the current segment

address. To calculate the absolute address of each record (line), we have to

shift the current segment address 4 bits to left and then add it to the record

address. Examples 8-2 and 8-3 show how to calculate the absolute address of

a record in extended Intel hex file.

5. HH......H is the real information (data or code). The loader places this informa-

tion into successive memory locations of Flash. The information in this field is

presented as low byte followed by the high byte.

6. CC is a single byte. This last byte is the checksum byte for everything in that

line. The checksum byte is used for error checking. Checksum bytes are dis-

cussed in detail in Chapters 6 and 7. Notice that the checksum byte at the end

of each line represents the checksum byte for everything in that line, and not

just for the data portion.

CHAPTER 8: AVR HARDWARE CONNECTION 8

What is the absolute address of the first byte of a record that has 0025 in the address

field if the last type 02 record before it has the segment address 0030?

Solution:

To calculate the absolute address of each record (line), we have to shift the segment

address (0030) four bits to the left and then add it to the record address (0025):

0030 (2 bytes segment address) shifted 4 bits to the left --> 00300

0025 (record address) + 25

=> (absolute address) 00325

Example 8-2

What is the absolute address of the first byte of the second record below?

:020000020000FC
:1000000008E00EBF0FE50DBF0FEF07BB05E500953C

Solution:

To calculate the absolute address of the first byte of the second record, we have to shift

left the segment address (0000, as you see in the first record) four bits and then add it

to the second record address (0000, as you see in the second record).

0000 (segment address) shift 4 bits to the left --> 00000

+ 0000 (record address)

000000 (absolute address)

Example 8-3

Analyzing the bytes in the Flash memory vs. list file

The data in the Flash memory of the AVR is recorded in a way that is called

Little-endian. This means that the high byte of the code is located in the higher

address location of Flash memory, and the low byte of the code is located in the

lower address location of Flash memory. Compare the first word of code (e008) in

Figure 8-8 with the first two bytes of Flash memory (08e0) in Figure 8-7. As you

see, 08, which is the low byte of the first instruction (LDI R16,HIGH(RAMEND))

in the code, is placed in the lower location of Flash memory, and e0, which is the

high byte of the instruction in the code, is placed in the next location of program

space just after 08.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 9

LOC OBJ LINE
.ORG 0x000

000000 e008 LDI R16,HIGH(RAMEND)
000001 bf0e OUT SPH,R16
000002 e50f LDI R16,LOW(RAMEND)
000003 bf0d OUT SPL,R16

000004 ef0f LDI R16,0xFF
000005 bb07 OUT DDRB,R16
000006 e505 LDI R16,0x55

BACK:
000007 9500 COM R16
000008 bb08 OUT PORTB,R16
000009 940e 000c CALL DELAY_1S
00000b cffb RJMP BACK

DELAY_1S:
00000c e140 LDI R20,16
00000d ec58 L1: LDI R21,200
00000e ef6a L2: LDI R22,250

L3:
00000f 0000 NOP
000010 0000 NOP
000011 956a DEC R22
000012 f7e1 BRNE L3
000013 955a DEC R21
000014 f7c9 BRNE L2
000015 954a DEC R20
000016 f7b1 BRNE L1
000017 9508 RET

Figure 8-8. List File for Test Program

(Comments and other lines are deleted, and some spaces are added for simplicity.)

Figure 8-7. AVR Flash Memory Contents

As we mentioned in Chapter 2, each Flash location in the AVR is 2 bytes

long. So, for example, the first byte of Flash location #2 is Byte #4 of the code.

See Figure 8-9.

In Figure 8-10 you see the hex file of the toggle code. The first record (line)

is a type 02 record and indicates the current segment address, which is 0000. The

next record (line) is a type 00 record and contains the data (the code to be loaded

into the chip). After ‘:’ the record starts with 10, which means that the data field

contains 10 (16 decimal) bytes of data. The next field is the address field (0000),

and it indicates that the first byte of the data field will be placed in address loca-

tion 0 in the current segment. So the first byte of code will be loaded into location

0 of Flash memory. (Reexamine Example 8-3 if needed.) Also, notice the use of

.ORG 0x000 in the code. The next field is the data field, which contains the code

to be loaded into the chip. The first byte of the data field is 08, which is the low

byte of the first instruction (LDI R16,HIGH(RAMEND)). See Figure 8-8. The last

field of the record is the checksum byte of the record. Notice that the checksum

byte at the end of each line represents the checksum byte for everything in that

line, and not just for the data portion.

Pay attention to the address field of the next record (0010) in Figure 8-10

and compare it with the address of the bb08 instruction in the list file in Figure

8-8. As you can see, the address in the list file is 000008, which is exactly half of

the address of the bb08 instruction in the hex file, which is 0010. That is because

each Flash location (word) contains 2 bytes.

CHAPTER 8: AVR HARDWARE CONNECTION 10

:020000020000FC
:1000000008E00EBF0FE50DBF0FEF07BB05E500953C
:1000100008BB0E940C00FBCF40E158EC6AEF0000E7
:1000200000006A95E1F75A95C9F74A95B1F7089526
:00000001FF

Separating the fields, we get the following:

:BB AAAA TT HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH CC
:02 0000 02 0000 FC
:10 0000 00 08E00EBF0FE50DBF0FEF07BB05E50095 3C
:10 0010 00 08BB0E940C00FBCF40E158EC6AEF0000 E7
:10 0020 00 00006A95E1F75A95C9F74A95B1F70895 26
:00 0000 01 FF

Figure 8-10. Intel Hex File Test Program with the Intel Hex Option

Figure 8-9. AVR Flash Memory Locations

Byte #0 Byte #1

Byte #2 Byte #3

Byte #4 Byte #5

Byte #6 Byte #7

Location #0

Location #1

Location #2

Location #3

Flash Memory

Examine Examples 8-4 through 8-6 to gain insight into the Intel Hex file

format.

Review Questions

1. True or false. The Intel Hex file format does not use the checksum byte method

to ensure data integrity.

2. The first byte of a line in an Intel Hex file represents ____.

3. The last byte of a line in an Intel Hex file represents ____.

4. In the TT field of an Intel Hex file, we have 00. What does it indicate?

5. Find the checksum byte for the following values: 22H, 76H, 5FH, 8CH, 99H.

6. In Question 5, add all the values and the checksum byte. What do you get?

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 11

(a) Verify the checksum byte for line 3 of Figure 8-10. (b) Verify also that the informa-

tion is not corrupted.

Solution:

(a) 10 + 00 + 00 + 00 + 08 + E0 + 0E + BF + 0F + E5 + 0D + BF + 0F +

EF + 07 + BB + 05 + E5 + 00 + 95 = 6C4 in hex. Dropping the carries (6)

gives C4H, and its 2's complement is 3CH, which is the last byte of line 3.

(b) If we add all the information in line 2, including the checksum byte, and drop the

carries we should get 10 + 00 + 00 + 00 + 08 + E0 + 0E + BF + 0F + E5
+ 0D + BF + 0F + EF + 07 + BB + 05 + E5 + 00 + 95 + 3C = 700.
Dropping the carries (7) gives 00H, which means OK.

Example 8-6

Compare the data portion of the Intel Hex file of Figure 8-10 with the opcodes in the

list file of the test program given in Figure 8-8. Do they match?

Solution:

In the second line of Figure 8-10, the data portion starts with 08E0H, where the low byte

is followed by the high byte. That means it is E008, the opcode for the instruction

“LDI R16,HIGH(RAMEND)”, as shown in the list file of Figure 8-8. The last byte of the

data in line 5 is 0895, which is the opcode for the “RET” instruction in the list file.

Example 8-5

From Figure 8-10, analyze the six parts of line 3.

Solution:

After the colon (:), we have 10, which means that 16 bytes of data are in this line. 0010H

is the record address, and means that 08, which is the first byte of the record, is placed

in address location 10H (16 decimal). Next, 00 means that this is not the last line of the

record. Then the data, which is 16 bytes, is as follows:

08BB0E940C00FBCF40E158EC6AEF0000. Finally, the last byte, E7, is the checksum byte.

Example 8-4

SECTION 8.4: AVR PROGRAMMING AND TRAINER BOARD

In this section, we show various ways of loading a hex file into the AVR

microcontroller. We also discuss the connection for a simple AVR trainer.

Atmel has skillfully designed AVR microcontrollers for maximum flexibil-

ity of loading programs. The three primary ways to load a program are:

1. Parallel programming. In this way a device burner loads the program into the

microcontroller separate from the system. This is useful on a manufacturing

floor where a gang programmer is used to program many chips at one time.

Most mainstream device burners support the AVR families: EETools is a pop-

ular one. The device programming method is straightforward: The chip is pro-

grammed before it is inserted into the circuit. Or, the chip can be removed and

reprogrammed if it is in a socket. A ZIF (zero insertion force) socket is even

quicker and less damaging than a standard socket. When removing and rein-

serting, we must observe ESD (electrostatic discharge) procedures. Although

AVR devices are rugged, there is always a risk when handling them. Using this

method allows all of the device’s resources to be utilized in the design. No pins

are shared, nor are internal resources of the chip used as is the case in the other

two methods. This allows the embedded designer to use the minimum board

space for the design.

2. An in-circuit serial programmer (ISP) allows the developer to program and

debug their microcontroller while it is in the system. This is done by a few

wires with a system setup to accept this configuration. In-circuit serial pro-

gramming is excellent for designs that change or require periodic updating.

AVR has two methods of ISP. They are SPI and JTAG. Most of the ATmega

family supports both methods. The SPI uses 3 pins, one for send, one for

receive, and one for clock. These pins can be used as I/O after the device is

programmed. The designer must make sure that these pins do not conflict with

the programmer. Notice that SPI stands for “serial peripheral interface” and is

a protocol. But ISP stands for “in-circuit serial programming” and is a method

of code loading. AVRISP and many other devices support ISP. To connect

AVRISP to your device you also need to connect VCC, GND, and RESET

pins. You must bring the pins to a header on the board so that the programmer

can connect to it. Figure 8-11 shows the pin connections.

CHAPTER 8: AVR HARDWARE CONNECTION 12

10

Figure 8-11. ISP 10-pin Connections (See www.Atmel.com for 6-pin version)

Another method of ISP is JTAG. JTAG is another protocol that supports in-cir-

cuit programming and debugging. It means that in addition to programming

you can trace your program on the chip line by line and watch or change the

values of memory locations, ports, or registers while your program is running

on the chip.

3. A boot loader is a piece of code burned into the microcontroller’s program

Flash. Its purpose is to communicate with the user’s board to load the program.

A boot loader can be written to communicate via a serial port, a CAN port, a

USB port, or even a network connection. A boot loader can also be designed

to debug a system, similar to the JTAG. This method of programming is excel-

lent for the developer who does not always have a device programmer or a

JTAG available. There are several application notes on writing boot loaders on

the Web. The main drawback of the boot loader is that it does require a com-

munication port and program code space on the microcontroller. Also, the boot

loader has to be programmed into the device before it can be used, usually by

one of the two previous ways.

The boot loader method is ideal for the developer who needs to quickly

program and test code. This method also allows the update of devices in the

field without the need of a programmer. All one needs is a computer with a port

that is compatible with the board. (The serial port is one of the most common-

ly used and discussed, but a CAN or USB boot loader can also be written.) This

method also consumes the largest amount of resources. Code space must be

reserved and protected, and external devices are needed to connect and com-

municate with the PC. Developing projects using this method really helps pro-

grammers test their code. For mature designs that do not change, the other two

methods are better suited.

AVR trainers

There are many popular trainers for the AVR chip. The vast majority of

them have a built-in ISP programmer. See the following website for more infor-

mation and support about the AVR trainers. For more information about how to use

an AVR trainer you can visit the www.MicroDigitalEd.com website.

Review Questions

1. Which method(s) to program the AVR microcontroller is/are the best for the

manufacturing of large-scale boards?

2. Which method(s) allow(s) for debugging a system?

3. Which method(s) would allow a small company to develop a prototype and test

an embedded system for a variety of customers?

4. True or false. The ATmega32 has Flash program ROM.

5. Which pin is used for reset in the ATmega32?

6. What is the status of the RESET pin when it is not activated?

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 13

The information about the trainer board can be found at:

www.MicroDigitalEd.com

SUMMARY

This chapter began by describing the function of each pin of the

ATmega32. A simple connection for ATmega32 was shown. Then, the fuse bytes

were discussed. We use fuse bytes to enable features such as BOD and clock

source and frequency. We also explained the Intel Hex file format and discussed

each part of a record in a hex file using an example. Then, we explained list files

in detail. The various ways of loading a hex file into a chip were discussed in the

last section. The connections to a ISP device were shown.

PROBLEMS

SECTION 8.2: AVR FUSE BITS

17. How many clock sources does the AVR have?

18. What fuse bits are used to select clock source?

19. Which clock source do you suggest if you need a variable clock source?

20. Which clock source do you suggest if you need to build a system with mini-

mum external hardware?

21. Which clock source do you suggest if you need a precise clock source?

22. How many fuse bytes are there in the AVR?

23. Which fuse bit is used to set the brown-out detection voltage for the

ATmega32?

24. Which fuse bit is used to enable and disable the brown-out detection voltage

for the ATmega32?

25. If the brown-out detection voltage is set to 4.0 V, what does it mean to the sys-

tem?

SECTION 8.3: EXPLAINING THE INTEL HEX FILE FOR AVR

26. True or false. The Hex option can be set in AVR Studio.

27. True or false. The extended Intel Hex file can be used for ROM sizes of less

than 64 kilobytes.

28. True or false. The extended Intel Hex file can be used for ROM sizes of more

than 64 kilobytes.

29. Analyze the six parts of line 3 of Figure 8-10.

30. Verify the checksum byte for line 3 of Figure 8-10. Verify also that the infor-

mation is not corrupted.

31. What is the difference between Intel Hex files and extended Intel Hex files?

SECTION 8.4: AVR PROGRAMMING AND TRAINER BOARD

32. True or false. To use a parallel programmer, we must remove the AVR chip

from the system and place it into the programmer.

33. True or false. ISP can work only with Flash chips.

CHAPTER 8: AVR HARDWARE CONNECTION 14

34. What are the different ways of loading a code into an AVR chip?

35. True or false. A boot loader is a kind of parallel programmer.

ANSWERS TO REVIEW QUESTIONS

SECTION 8.2: AVR FUSE BITS

1. 1/16 MHz = 62.5 ns

2. 16 bits = 2 bytes

3. False

4. 1, 8

5. BODEN

6. False

7. If you are using an external crystal with a frequency of more than 1 MHz you can set the

CKSEL3, CKSEL2, CKSEL1, SUT1, and SUT0 bits to 1 (not programmed) and clear CKOPT

to 0 (programmed).

8. 2.7 V, 4 V, BODLEVEL

9. False

SECTION 8.3: EXPLAINING THE INTEL HEX FILE FOR AVR

1. False

2. The number of bytes of data in the line

3. The checksum byte of all the bytes in that line

4. 00 means this is not the last line and that more lines of data follow.

5. 22H + 76H + 5FH + 8CH + 99H = 21CH. Dropping the carries we have 1CH and its 2’s com-

plement, which is E4H.

6. 22H + 76H + 5FH + 8CH + 99H + E4H = 300H. Dropping the carries, we have 00, which

means that the data is not corrupted.

SECTION 8.4: AVR PROGRAMMING AND TRAINER BOARD

1 Device burner

2. JTAG and boot loader

3. ISP

4. True

5. Pin 9

6. HIGH

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 15

