
SECTION 18.5: TWI PROGRAMMING WITH CHECKING

STATUS REGISTER

In this section we discuss TWI programming with checking the value of

status register. By checking the value of the status register you can monitor the

TWI module current state and operation. This helps you to detect an error when it

happens and resolve it at the same time. This is an advanced topic and used only

if you are connecting I2C to multiple masters.

As we mentioned before, there are four modes of operation: master trans-

mitter, master receiver, slave transmitter, and slave receiver. We will discuss each

mode separately because each mode has its own special status codes. For each

mode of operation there is a flowchart that shows the sequence of steps in each

mode and also a figure that summarizes most of the status values for each mode in

a single table.

Programming of the AVR TWI in master transmitter operat-

ing mode

Figure 18-18 shows the steps of programming the AVR TWI in master

transmitter mode. Here we focus on each step in more detail:

Initialization
To initialize the TWI module to operate in master operating mode, we

should do the following steps:

1. Set the TWI module clock frequency by setting the values of the TWBR reg-

ister and the TWPS bits in the TWSR register.

2. Enable the TWI module by setting the TWEN bit in the TWCR register to one.

Transmit START condition
To start data transfer in master operating mode, we must transmit a START

condition. To transmit a START condition we should do the following steps:

1. Set the TWEN, TWSTA, and TWINT bits of TWCR to one. Setting the TWEN

bit to one enables the TWI module. Setting the TWSTA bit to one tells the TWI

to initiate a START condition when the bus is free, and setting the TWINT bit

to one clears the interrupt flag to initiate operation of the TWI module to trans-

mit a START condition.

2. Poll the TWINT flag in the TWCR register to see when the START condition

is completely transmitted.

3. When the TWINT flag is set to one, check the value of the status register to see

if the START condition transmitted successfully. Notice that you have to mask

the two LSB bits of the status register to get ride of prescalers. If the status

value is 0x08 it indicates that the START condition has been transmitted suc-

cessfully.

Send SLA + W
To send SLA + W, after transmitting the START condition, we should do

the following steps:

1. Copy SLA + W to the TWDR.

629

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 630

Send START

Is Status
$8?

Send SLA+W

Yes

Is Status
$18?

Send Data

Yes

No

Is Status
$28?

Send STOP

No

YesWant to
 send more data?

No

Yes

No

Do error handling

Figure 18-18. Programming Steps of Master Transmitter Mode with Checking of Flags

2. Set the TWEN and TWINT bits of the TWCR register to one to start sending

the byte.

3. Poll the TWINT flag in the TWCR register to see when the byte is complete-

ly transmitted.

4. When the TWINT flag is set to one, you should check the value of the status

register to see if the SLA + W is transmitted successfully. If the status value is

0x18, it indicates that the SLA + W has been transmitted and ACK received

successfully.

Send data
To send data, after transmitting of SLA + W, we should do the following

steps:

1. Copy the byte of data to the TWDR.

2. Set the TWEN and TWINT bits of the TWCR register to one to start sending

the byte.

3. Poll the TWINT flag in the TWCR register to see whether the byte is complete-

ly transmitted.

4. When the TWINT flag is set to one, you should check the value of the status

register to see if the data has been transmitted successfully and the value of

ACK was as expected. Notice that NACK does not necessarily indicate an

error; it may indicate that no more data needs to be transmitted. If the status

value indicates that ACK is received (0x28) you can either transmit a STOP

condition or repeat this function (Send Data) to transmit more data; otherwise,

you should transmit a STOP condition.

Transmit STOP condition
To stop data transfer, we must transmit a STOP condition. This is done by

setting the TWEN, TWSTO, and TWINT bits of the TWCR register to one. Notice

that we cannot poll the TWINT flag after transmitting a STOP condition.

Figure 18-19 shows the meanings of the different values of the status reg-

ister and possible responses to each of them.

631

TWCR =(1<<TWEN)|(TWINT)|(TWSTO)

TWDR = DATA
TWCR =(1<<TWEN)|(TWINT)

Set values of TWBR register and prescaler bits
TWCR = 0x04

TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWSTA)Initialization:

Status Meaning

START condition has
been transmitted$8

Your Response Next Action By TWI module

TWDR = SLA+W
TWCR =(1<<TWEN)|(TWINT)

SLA + W will be transmitted
ACK or NACK will be returned

$18 SLA + W transmitted.
ACK has been received

TWDR = DATA
TWCR =(1<<TWEN)|(TWINT)

$30 TWCR =(1<<TWEN)|(TWINT)|(TWSTO)

STOP condition will be transmitted

$28
O
R

Data byte has been
transmitted. ACK has

been received.

DATA byte will be Transmitted
ACK or NACK will be returned

Data transmitted.
NACK received STOP condition will be transmitted

Enable TWI
Transmit START condition

$20 SLA + W transmitted.
NACK has been received TWCR =(1<<TWEN)|(TWINT)|(TWSTO)

DATA byte will be Transmitted
ACK or NACK will be returned

STOP condition will be transmitted

Figure 18-19. TWSR Register Values for Master Transmitter

Program 18-14 shows how a master writes 11110000 on a slave with

address 1101000. The program checks the value of the status register in each step

of the operation.

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 632

Program 18-14: Writing a Byte in Master Mode with Status Checking

.INCLUDE "M32DEF.INC"

LDI R21,HIGH(RAMEND);set up stack
OUT SPH,R21
LDI R21,LOW(RAMEND)
OUT SPL,R21

CALL I2C_INIT ;initialize TWI module
CALL I2C_START ;transmit START condition
CALL I2C_READ_STATUS ;read status register
CPI R26, 0x08 ;was START transmitted correctly?
BRNE ERROR ;else jump to error function
LDI R27, 0b11010000 ;SLA (11010000) + W(0)
CALL I2C_WRITE ;write R27 to I2C bus
CALL I2C_READ_STATUS ;read status register
CPI R26, 0x18 ;was SLA+W transmitted, ACK received?
BRNE ERROR ;else jump to error function
LDI R27, 0b11110000 ;data to be transmitted
CALL I2C_WRITE ;write R27 to I2C bus
CALL I2C_READ_STATUS ;read status register
CPI R26, 0x28 ;was data transmitted, ACK received?
BRNE ERROR ;else jump to error function
CALL I2C_STOP ;transmit STOP condition

HERE: RJMP HERE ;wait here forever
ERROR: ;you can type error handler here

LDI R21,0xFF
OUT DDRA,R21 ;Port A is output
OUT PORTA,R26 ;send error code to Port A
RJMP HERE ;some error code

;***
I2C_INIT:

LDI R21, 0
OUT TWSR,R21 ;set prescaler bits to zero
LDI R21, 0x48 ;move 0x48 into R21
OUT TWBR,R21 ;clock frequency is 50k (XTAL=50MHZ)
LDI R21, (1<<TWEN) ;move 0x04 into R21
OUT TWCR,R21 ;enable the TWI
RET

;***
I2C_START:

LDI R21, (1<<TWINT)|(1<<TWSTA)|(1<<TWEN)
OUT TWCR,R21 ;transmit a START condition

WAIT1:
IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next line if TWINT is 1

Program 18-15 is the C version of Program 18-10 and shows how a mas-

ter writes 11110000 to a slave with address 1101000. The program checks the

value of the status register in each step of the operation.

633

Program 18-14: Writing a Byte in Master Mode with Status Checking (cont. from prev. page)

RJMP WAIT1 ;jump to WAIT1 if TWINT is 0
RET

;***
I2C_WRITE:

OUT TWDR, R27 ;move the byte into TWDR
LDI R21, (1<<TWINT)|(1<<TWEN)
OUT TWCR, R21 ;configure TWCR to send TWDR

WAIT3:
IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next line if TWINT is 1
RJMP WAIT3 ;jump to WAIT3 if TWINT is 0
RET

;***
I2C_STOP:

LDI R21, (1<<TWINT)|(1<<TWSTO)|(1<<TWEN)
OUT TWCR, R21 ;transmit STOP condition
RET

;***
I2C_READ_STATUS:

IN R26, TWSR ;read status register into R21
ANDI R26, 0xF8 ;mask the prescaler bits
RET

Program 18-15: Writing a Byte in Master Mode with Status Checking in C

#include <avr/io.h>

void i2c_write(unsigned char data)
{

TWDR = data ;
TWCR = (1<< TWINT)|(1<<TWEN);
while ((TWCR & (1 <<TWINT)) == 0);

}
//**
void i2c_start(void)
{

TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);
while ((TWCR & (1 << TWINT)) == 0);

}
//**
void i2c_showError(unsigned char er)
{

DDRA = 0xFF;
PORTA = er;

}

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 634

Program 18-15: Writing a Byte in Master Mode with Status Checking in C (continued)

//**
unsigned char i2c_readStatus(void)
{

unsigned char i = 0;
i = TWSR & 0xF8;
return i;

}
//**
void i2c_stop()
{

TWCR = (1<< TWINT)|(1<<TWEN)|(1<<TWSTO);
}
//**
void i2c_init(void)
{

TWSR=0x00; //set prescaler bits to zero
TWBR=0x48; //SCL frequency is 50K for XTAL = 8M
TWCR=0x04; //enable the TWI module

}
//**

int main (void)
{

unsigned char s = 0;
i2c_init();
i2c_start(); //transmit START condition
s = i2c_readStatus();
if (s != 0x08)
{

i2c_showError(s);
return 0;

}
i2c_write(0b11010000); //transmit SLA + W(0)
s = i2c_readStatus();
if (s != 0x18)
{

i2c_showError(s);
return 0;

}
i2c_write(0b11110000); //transmit data
s = i2c_readStatus();
if (s != 0x28)
{

i2c_showError(s);
return 0;

}
i2c_stop(); //transmit STOP condition
while(1); //stay here forever
return 0;

}

Programming of the AVR TWI in master receiver operating

mode

The steps to program the AVR TWI to operate in master receiver mode are

somewhat similar to the steps for programming for master transmitter mode.

Figure 18-20 shows the steps for programming of the AVR TWI in master receiv-

er mode. Here we focus on each step in more detail:

Initialization
To initialize the TWI module to operate in master operating mode, we

should do the following steps:

1. Set the TWI module clock frequency by setting the values of the TWBR reg-

ister and the TWPS bits in the TWSR register.

2. Enable the TWI module by setting the TWEN bit in the TWCR register to one.

Transmit START condition
To start data transfer in master operating mode, we must transmit a START

condition. To transmit a START condition we should do the following steps:

1. Set the TWEN, TWSTA, and TWINT bits of TWCR to one. Setting the TWEN

bit to one enables the TWI module. Setting the TWSTA bit to one tells the TWI

module to initiate a START condition when the bus is free, and setting the

TWINT bit to one clears the interrupt flag to initiate operation of the TWI

module to transmit a START condition.

2. Poll the TWINT flag in the TWCR register to see when the START condition

is completely transmitted.

3. When the TWINT flag is set to one, check the value of the status register to see

if the START condition was successfully transmitted. Notice that you have to

mask the two LSB bits of the status register to get rid of prescalers. If the sta-

tus value is 0x08 it indicates that the START condition was successfully trans-

mitted.

Send SLA + R
To send SLA + R, after transmitting a START condition, we should do the

following steps:

1. Copy SLA + R to the TWDR.

2. Set the TWEN and TWINT bits of the TWCR register to one to start sending

the byte.

3. Poll the TWINT flag in the TWCR register to see whether the byte has com-

pletely transmitted.

4. When the TWINT flag is set to one, you should check the value of status reg-

ister to see if the SLA + R transmitted successfully. 0x40 means that the SLA

+ R transmitted and ACK was successfully received.

Receive data return NACK
If we want to receive only one byte of data, we should receive data and

return NACK by doing the following steps:

1. Set the TWEN and TWINT bits of the TWCR register to one to start receiving

a byte.

2. Poll the TWINT flag in the TWCR register to see whether a byte was com-

635

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 636

Send START

Is Status
$8?

Send SLA+R

Yes

Is Status
$40?

Read Data
Return ACK

Yes

No

Is Status
$50?

Send STOP

No

YesWant to
 read more

data?

No

Yes

No

Do error handling

 Want to
read only
one other

 byte?

YesNo

Read Data
Return NACK

Is Status
$58?

Yes

Figure 18-20. TWI Programming Steps of Master Receiver Mode with Checking of Flags

pletely received.

3. Copy the received byte from the TWDR.

4. When the TWINT flag is set to one, you should check the value of the status

register to see if the byte was received successfully. 0x58 means that a byte of

data was received and NACK returned successfully. After this step we should

transmit a STOP condition.

Receive data and return ACK
If we want to receive more than one byte of data, we should receive data

and return ACK by doing the following steps:

1. Set the TWEN, TWINT, and TWEA bits of the TWCR register to one to

receive a byte of data and return ACK.

2. Poll the TWINT flag in the TWCR register to see when a byte has been

received completely.

3. Copy the received byte from the TWDR.

4. When the TWINT flag is set to one, you should check the value of the status

register to see if the byte was received successfully. 0x50 means that a byte of

data was received and ACK returned successfully. Now you can repeat this

step to receive one or more bytes of data, or you can run the “Receive Data

Return NACK” function to receive only one other byte of data. Also, you can

transmit a STOP condition to finish receiving data.

Transmit STOP condition
To stop data transfer, we must transmit a STOP condition. This is done by

setting the TWEN, TWSTO, and TWINT bits of the TWCR register to one. Notice

that we cannot poll the TWINT flag after transmitting a STOP condition.

Figure 18-21 shows the meanings of different values of the status register

and possible responses to each of them in master receiver operating mode.

Program 18-15 shows how a master reads a byte from a slave with address

1101000 and displays the result on Port A. The program checks the value of the

637

TWCR = 0x04
TWCR = (1<<TWEN)|(1<<TWINT)|(1<<TWSTA)Initialization:

Status Meaning

START condition has
been transmitted$8

Your Response Next Action By TWI module

TWDR = SLA + R (1)
TWCR =(1<<TWEN)|(TWINT)

SLA + R will be transmitted
ACK or NACK will be returned

$40
SLA + R has been

transmitted. ACK has
been received

TWCR =(1<<TWEN)|(TWINT)|(TWEA)

TWCR =(1<<TWEN)|(TWINT)
OR

$48 TWCR =(1<<TWEN)|(TWINT)|(TWSTO) STOP condition will be transmitted

$50

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)|(TWEA)

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)

OR
Data byte has been
received. ACK has

been returned.

DATA byte will be received
ACK will be returned

DATA byte will be received
NACK will be returned

SLA + R transmitted.
NACK received

Another DATA byte will be received
ACK will be returned

Another DATA byte will be received
NACK will be returned

$58 Data byte received.
NACK ACK returned.

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)|(TWSTO) STOP condition will be transmitted

Enable TWI
Transmit START condition.

Figure 18-21. TWSR Register Values for Master Receiver Operating Mode

status register in each step of the operation.

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 638

Program 18-16: TWI Reading a Byte in Master Mode with Status Checking

.INCLUDE "M32DEF.INC"
LDI R21,HIGH(RAMEND);set up stack
OUT SPH,R21
LDI R21,LOW(RAMEND)
OUT SPL,R21
LDI R21,0xFF
OUT DDRA,R21 ;Port A is output
CALL I2C_INIT ;initialize TWI module
CALL I2C_START ;transmit START condition
CALL I2C_READ_STATUS ;read status register
CPI R26, 0x08 ;was start transmitted correctly?
BRNE ERROR ;else jump to error function
LDI R27, 0b11010001 ;SLA (11010000) + R(1)
CALL I2C_WRITE ;write R27 to I2C bus
CALL I2C_READ_STATUS ;read status register
CPI R26, 0x40 ;was SLA+R transmitted, ACK received?
BRNE ERROR ;else jump to error function
CALL I2C_READ
CALL I2C_READ_STATUS ;read status register
CPI R26, 0x58 ;was data transmitted, ACK received?
BRNE ERROR ;else jump to error function
OUT PORTA,R27
CALL I2C_STOP ;transmit STOP condition

HERE: RJMP HERE ;wait here forever
ERROR:RJMP HERE ;you can type error handler here
;***
I2C_INIT:

LDI R21, 0
OUT TWSR,R21 ;set prescaler bits to zero
LDI R21, 0x48 ;move 0x48 into R21
OUT TWBR,R21 ;SCL freq. is 50k for 8 MHz XTAL
LDI R21, (1<<TWEN) ;move 0x04 into R21
OUT TWCR,R21 ;enable the TWI
RET

;***
I2C_START:

LDI R21, (1<<TWINT)|(1<<TWSTA)|(1<<TWEN)
OUT TWCR,R21 ;transmit a START condition

WAIT1:
IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next line if TWINT is 1
RJMP WAIT1 ;jump to WAIT1 if TWINT is 0
RET

;***
I2C_WRITE:

OUT TWDR, R27 ;move the byte into TWDR
LDI R21, (1<<TWINT)|(1<<TWEN)
OUT TWCR, R21 ;configure TWCR to send TWDR

Program 18-17 is the C version of Program 18-16.

639

Program 18-16: TWI Reading a Byte in Master Mode with Status Checking (continued)

W3: IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next line if TWINT is 1
RJMP W3 ;jump to W3 if TWINT is 0
RET

;***
I2C_READ:

LDI R21,(1<<TWINT)|(1<<TWEN)
OUT TWCR, R21

W2: IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next line if TWINT is 1
RJMP W2 ;jump to W2 if TWINT is 0
IN R27, TWDR ;read received data into R21
RET

;***
I2C_STOP:

LDI R21, (1<<TWINT)|(1<<TWSTO)|(1<<TWEN)
OUT TWCR, R21 ;transmit STOP condition
RET

;***
I2C_READ_STATUS:

IN R26, TWSR ;read status register into R21
ANDI R26, 0xF8 ;mask the prescaler bits
RET

Program 18-17: TWI Reading a Byte in Master Mode with Status Checking in C

#include <avr/io.h>
void i2c_showError(unsigned char er)
{

DDRA = 0xFF;
PORTA = er;

} //**
unsigned char i2c_readStatus(void)
{

unsigned char i = 0;
i = TWSR & 0xF8;
return i;

} //**
void i2c_init(void)
{

TWSR=0x00; //set prescaler bits to zero
TWBR=0x48; //SCL frequency is 50K for XTAL=8M
TWCR=0x04; //enable the TWI module

} //**
void i2c_start(void)
{

TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);
while ((TWCR & (1 << TWINT)) == 0);

} //**

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 640

Program 18-17: TWI Reading a Byte in Master Mode with Status Checking in C (continued)

void i2c_write(unsigned char data)
{

TWDR = data;
TWCR = (1<< TWINT)|(1<<TWEN);
while ((TWCR & (1 <<TWINT)) == 0);

} //**
unsigned char i2c_read(unsigned char isLast)
{

if (isLast == 0) //if want to read more than 1 byte
TWCR = (1<< TWINT)|(1<<TWEN)|(1<<TWEA);

else //if want to read only one byte
TWCR = (1<< TWINT)|(1<<TWEN);

while ((TWCR & (1 <<TWINT)) == 0);
return TWDR;

} //**
void i2c_stop()
{

TWCR = (1<< TWINT)|(1<<TWEN)|(1<<TWSTO);
} //**
int main (void)
{

DDRA = 0xFF; //Port A is output
unsigned char s,i;
i2c_init();
i2c_start(); //transmit START condition
s = i2c_readStatus();
if (s != 0x08)
{

i2c_showError(s);
return 0;

}
i2c_write(0b11010001); //transmit SLA + R(1)
s = i2c_readStatus();
if (s != 0x40)
{

i2c_showError(s);
return 0;

}
i=i2c_read(1);
s = i2c_readStatus();
if (s != 0x58)
{

i2c_showError(s);
return 0;

}
PORTA= i; //show the byte on Port A
i2c_stop(); //transmit STOP condition
while(1); //stay here forever
return 0;

}

Programming of the AVR TWI in slave transmitter operat-

ing mode

Before programming the AVR to operate in slave mode, there are some

points that we must pay attention to. As we mentioned before, the slave device,

regardless of whether it is receiver or transmitter, does not generate the clock

pulse. To control the clock rate and let the software to complete its job, the slave

device uses clock stretching. The slave device does not start or stop a transmission;

it listens to the bus and replies when it is addressed by a master device.

In the slave transmitter mode, one or more bytes of data are transmitted

from the slave to a master receiver. The following steps show the transmission of

one or more bytes of data in slave transmitter mode.

Initialization
To initialize the TWI module to operate in slave operating mode, we should

do the following steps:

1. Set the TWAR. As we mentioned before, the upper seven bits of TWAR are the

slave address. It is the address to which the TWI will respond when addressed

by a master. The eighth bit is TWGCE. If you set this bit to one, the TWI will

respond to the general call address ($00); otherwise, it will ignore the general

call address.

2. Enable the TWI module by setting the TWEN bit in the TWCR register to one.

3. Set the TWEN and TWEA bits of TWCR to one to enable the TWI and

acknowledge generation.

Wait to be addressed for read
In slave mode, the TWI hardware waits until it is addressed by its own

slave address (or the general call address, if enabled) followed by the R/W bit, and

then sets the TWINT flag and updates the status register. If the R/W bit is zero

(write), it means that the slave should operate in slave receiver mode; otherwise,

the slave should operate in slave transmitter mode. Notice that you can not direct-

ly read the value of the R/W bit. Instead you should read the value of the status

register. Next, we will show how to wait to be addressed by a master device.

1. Poll the TWINT flag in the TWCR register to see whether a byte has received

completely.

2. When the TWINT flag is set to one, you should check the value of the status

register to see if the SLA + R is received successfully. $A8 means that the SLA

+ R was received and ACK returned successfully.

Now if you want to transmit only one byte of data you should run the

“Send Data and Wait for NACK” function. Otherwise, if you want to send more

than one byte of data you should run the “Send Data and Wait for ACK” function.

Next we will examine each function in detail.

Send data and wait for ACK
In slave transmitter mode, if you want to transmit more than one byte of

data you should send a byte of data and wait for ACK by doing the following steps:

1. Copy the byte of data to the TWDR.

2. Set the TWEN, TWINT, and TWEA bits of the TWCR register to one to send

641

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 642

Wait to be
addressed

Is Status
$A8?

Yes

Send data
Wait for ACK

Is Status
$B8?

No

YesWant to
 send more

data?

No

Yes

NoDo error handling

Want to
send only
one other

 byte?

YesNo

Send Data
Wait for NACK

Is Status
$C8 or $C0?

Yes

1

1

Is TWIF one?

Yes

No

Figure 18-22. TWI Programming Steps of Slave Transmitter Mode with Checking of Flags

a byte of data and wait for ACK.

3. Poll the TWINT flag in the TWCR register to see whether the byte transmitted

completely.

4. When the TWINT flag is set to one, you should check the value of the status

register to see if the data transmitted successfully and the value of ACK was as

expected. Notice that NACK does not necessarily indicate an error; it may

indicate that no more data needs to be transmitted. If the status value indicates

that NACK was received ($0C), it means that the current transmission section

is finished and you should start from the beginning. If the status value indicates

that ACK was received (0xC8), you can either repeat this function to transmit

more than one byte of data or you can run the “Send Data and Wait for NACK”

function to transmit only one byte of data.

Send data and wait for NACK
In slave transmitter mode, to transmit another byte of data you should send

a byte of data and wait for NACK by doing the following steps:

1. Copy the byte of data to the TWDR.

2. Set the TWEN and TWINT bits of the TWCR register to one to send a byte and

wait for NACK.

3. Poll the TWINT flag in the TWCR register to see when the byte has been

transmitted completely.

4. When the TWINT flag is set to one, you should check the value of the status

register. If the status value is $0C, it indicates that NACK has been received.

If the value of status register is $C8, it means that ACK was received. In both

cases you have to go to the “Wait to be addressed” mode because you have not

set the TWEA bit in step 2 saying that you want to transmit only one other byte

of data.

Notice that in most applications you can use the “Send Data and Wait for

ACK” function instead of the “Send Data and Wait for NACK” function. We rec-

643

TWCR = 0x04
TWAR = the address of Slave

TWCR = (1<<TWEN)|(1<<TWIF)|(1<<TWEA)
Initialization:

Status Meaning

Own SLA+R received
ACK returned$A8

Your Response Next Action By TWI module

 TWDR = DATA
TWCR =(1<<TWEN)|(TWINT)|(TWEA)

DATA byte will be transmitted
 Wait for NACK

 TWDR = DATA
TWCR =(1<<TWEN)|(TWINT)

DATA byte will be transmitted
Wait for ACK

$B8
Data has been

transmitted
ACK received

OR

$C0
TWCR =(1<<TWEN)|(TWINT)|(TWEA) Start from beginning and wait to be

addressed

TWCR =(1<<TWEN)|(TWINT) Start from beginning but do not
respond to Its address (Sleep)

$C8

Data transmitted
ACK received but you
wanted NACK (TWEA

was 0 in last command)

OR

TWCR =(1<<TWEN)|(TWINT)|(TWEA)

TWCR =(1<<TWEN)|(TWINT)
OR

Data has been
transmitted

NACK received

Start from beginning and wait to be
addressed

Start from beginning but do not
respond to Its address (Sleep)

Enable TWI
Set the slave address

Enable Acknowledging by slave

 TWDR = DATA
TWCR =(1<<TWEN)|(TWINT)|(TWEA)

DATA byte will be transmitted
 Wait for NACK

 TWDR = DATA
TWCR =(1<<TWEN)|(TWINT)

DATA byte will be transmitted
Wait for ACK

OR

Figure 18-23. TWSR Register Values for Slave Transmitter Operating Mode

ommend that you use the first one.

Program 18-18 shows how to initialize the TWI module to operate in

slave transmitter mode. In this program the TWI module listens to the bus and

waits to be addressed by a master device. Then it transmits the letter ‘G’ to the

master device.

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 644

Program 18-18: Writing a Byte in Slave Mode with Status Checking

.INCLUDE "M32DEF.INC"

LDI R21,HIGH(RAMEND);set up stack
OUT SPH,R21
LDI R21,LOW(RAMEND)
OUT SPL,R21

CALL I2C_INIT ;initialize the TWI module as slave
CALL I2C_LISTEN ;listen to the bus to be addressed
CALL I2C_READ_STATUS ;read the status value into R26
CPI R26, 0xA8 ;addressed as slave tranmitter ?
BRNE ERROR ;else jump to error function
LDI R27, 'G' ;load 'G' into R21
CALL I2C_WRITE
CALL I2C_READ_STATUS ;read the status value into R26
CPI R21, 0xc0 ;was data transmitted, NACK received?
BRNE ERROR ;else jump to error function

HERE:
RJMP HERE ;wait here forever

ERROR: ;you can type error handler here
LDI R21,0xFF
OUT DDRA,R21 ;Port A is output
OUT PORTA,R26
RJMP HERE

;***

I2C_INIT:
LDI R21, 0x10 ;load 00010000 into R21
OUT TWAR,R21 ;set address register
LDI R21, (1<<TWEN) ;move 0x04 into R21
OUT TWCR,R21 ;enable the TWI
LDI R21, (1<<TWINT)|(1<<TWEN)|(1<<TWEA)
OUT TWCR,R21 ;enable TWI and ACK(can't be ignored)
RET

;***

I2C_LISTEN:
W1:

IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next intruction if TWINT is 1
RJMP W1 ;jump to W1 if TWINT is 0
RET

Program 18-19 is the C version of Program 18-18. Program 18-19 shows

how to initialize the TWI module to operate in slave transmitter mode. In Program

18-19 the TWI module listens to the bus and waits to be addressed by a master

device. Then it transmits the letter ‘G’ to the master device.

645

Program 18-18: Writing a Byte in Slave Mode with Status Checking (cont. from prev. page)

;***
I2C_WRITE:

OUT TWDR, R27 ;move R21 to TWDR
LDI R21, (1<<TWINT)|(1<<TWEN)
OUT TWCR, R21 ;configure TWCR to send TWDR

W2:
IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next intruction if TWINT is 1
RJMP W2 ;jump to W2 if TWINT is 0
RET

;***
I2C_READ_STATUS:

IN R26, TWSR ;read status register into R21
ANDI R26, 0xF8 ;mask the prescaler bits
RET

Program 18-19: Writing a Byte in Slave Mode with Status Checking in C

#include <avr/io.h> //standard AVR header

void i2c_showError(unsigned char er)
{

DDRA = 0xFF;
PORTA = er;

} //**

unsigned char i2c_readStatus(void)
{

unsigned char i = 0;
i = TWSR & 0xF8;
return i;

} //**

void i2c_initSlave(unsigned char slaveAddress)
{

TWCR = 0x04; //enable TWI module
TWAR = slaveAddress; //set the slave address
TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWEA);//init TWI module

}

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 646

Program 18-19: Writing a Byte in Slave Mode with Status Checking in C (continued)

//***

void i2c_send(unsigned char data)
{

TWDR = data; //copy data to TWDR
TWCR = (1<< TWINT)|(1<<TWEN); //start transmission
while ((TWCR & (1 <<TWINT))==0); //wait to complete

}

//***

void i2c_listen()
{

while ((TWCR & (1 <<TWINT))==0); //wait to be addressed
}

//***

int main (void)
{

i2c_initSlave(0x10); //init TWI module as
//slave with address
//0b0001000 and do not
//accept general call

i2c_listen(); //listen to be addressed

unsigned char s,i;
s = i2c_readStatus();
if (s != 0xA8)
{

i2c_showError(s);
return 0;

}
i2c_send('G');
s = i2c_readStatus();
if (s != 0xC0)
{

i2c_showError(s);
return 0;

}

while(1); //stay here forever
return 0;

}

Programming of the AVR TWI in slave receiver operating

mode

In the slave receiver mode, one or more bytes of data are transmitted from

a master transmitter to the slave receiver. The following steps show the functions

needed to receive one or more bytes of data in slave receiver mode.

Initialization
To initialize the TWI module to operate in slave operating mode, we should

do the following steps:

1. Set the TWAR. As we mentioned before, the upper seven bits of TWAR are the

slave address. It is the address to which the Two-wire Serial Interface will

respond when addressed by a master. The eighth bit is TWGCE. If you set this

bit to one, the TWI will respond to the general call address ($00); otherwise, it

will ignore the general call address.

2. Enable the TWI module by setting the TWEN bit in the TWCR register to one.

3. Set the TWEN and TWEA bits of TWCR to one to enable the TWI and

acknowledge generation.

Wait to be addressed for write
In slave mode, we should do the following steps to wait to be addressed by

a master for a write operation.

1. Poll the TWINT flag in the TWCR register to see when a byte has been

received completely.

2. When the TWINT flag is set to one, we should check the value of the status reg-

ister to see if the SLA + W was received successfully. $60 or $70 (for general

call) means that the SLA + W was received and ACK returned successfully.

Now if you want to receive only one byte of data you should run the

“Receive Data and Return NACK” function. Otherwise, if you want to send more

than one byte of data you should run the “Receive Data and Return ACK” func-

tion. Next, we will examine each function in detail.

Receive data and Return ACK
In slave receiver mode, if you want to receive more than one byte of data

you should receive a byte of data and return ACK by doing the following steps:

1. Set the TWEN, TWINT, and TWEA bits of the TWCR register to one to

receive a byte and return ACK.

2. Poll the TWINT flag in the TWCR register to see when a byte has been

received completely.

3. When the TWINT flag is set to one, you should check the value of the status

register to see if the data was received successfully and ACK was returned. If

the status value is $80 or $90 (for general call), it means that a byte of data has

been received and ACK was returned. You can either repeat this function to

receive more than one bytes of data or you can run the “Receive Data and

Return NACK” function to receive only one byte of data.

4. Copy the received byte from the TWDR.

647

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 648

Wait to be
addressed

Is Status
$60 or $70?

Yes

No

Do error handling

1

Is TWIF one?

Yes

No

Want to
read only
one other

byte

Read Data
Return NACK

Read Data
Return ACK

Is Status
$80 or $90?

Want to
send more

data?

Yes

Yes

No Yes

Is Status
$88 or $98?

No
No

Yes

1

2

2

Figure 18-24. TWI Programming Steps of Slave Receiver Mode with Checking of Flags

Receive data and return NACK
In slave receiver mode, if you want to receive one byte of data you should

receive the byte of data and return NACK by doing the following steps:

1. Set the TWEN and TWINT bits of the TWCR register to one to receive a byte

and return NACK.

2. Poll the TWINT flag in the TWCR register to see when a byte has been

received completely.

3. When the TWINT flag is set to one, you should check the value of the status

register to see if the data was received successfully and NACK was returned.

If the status value is $88 or $98 (for general call), it means that a byte of data

was received and NACK was returned.

4. Copy the received byte from the TWDR.

Program 18-20 shows how to initialize the TWI module to operate in slave

receiver mode. This program receives a byte of data and displays it on Port A after

being addressed by a master device.

649

Status Meaning

Own SLA+W received
ACK returned

$60
($70 for
General

Call)

Your Response Next Action By TWI module

TWCR =(1<<TWEN)|(TWINT)|(TWEA)

TWCR =(1<<TWEN)|(TWINT)

DATA byte will be received
ACK will be returned

$80
($90 for
General

Call)

Data has been received
ACK returned

OR

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)|(TWEA)

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)

OR

$88
($98 for
General

Call)

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)|(TWEA)

Start from beginning and wait to be
addressed

DATA = TWDR
TWCR =(1<<TWEN)|(TWINT)

Start from beginning but do not
respond to Its address (Sleep)

OR

DATA byte will be received
NACK will be returned

Data has been received
NACK returned

$A0
TWCR =(1<<TWEN)|(TWINT)|(TWEA) Start from beginning and wait to be

addressed

TWCR =(1<<TWEN)|(TWINT) Start from beginning but do not
respond to Its address (Sleep)

OR
STOP or REPEATED
START condition has

been received

DATA byte will be received
ACK will be returned

DATA byte will be received
NACK will be returned

TWAR = the address of Slave
TWCR = 0x04

TWCR = (1<<TWEN)|(1<<TWIF)|(1<<TWEA)
Initialization:

Enable TWI
Set the slave address

Enable Acknowledging by slave

Figure 18-25. TWSR Register Values for Slave Receiver Operating Mode

Program 18-20: Reading a Byte in Slave Mode with Status Checking

.INCLUDE "M32DEF.INC"

LDI R21,HIGH(RAMEND);set up stack
OUT SPH,R21
LDI R21,LOW(RAMEND)
OUT SPL,R21

LDI R21, 0xFF ;move 0xFF into R21
OUT DDRA,R21 ;set PORTA as ouput

CALL I2C_INIT ;initialize the TWI module as slave

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 650

Program 18-20: Reading a Byte in Slave Mode with Status Checking (cont. from prev. page)

CALL I2C_LISTEN ;listen to the bus to be addressed
CALL I2C_READ_STATUS
CPI R26, 0x60 ;addressed as slave receiver?
BRNE ERROR ;else jump to error function
CALL I2C_READ ;read a byte and copy it to R27
CALL I2C_READ_STATUS
CPI R26, 0x80 ;addressed as slave receiver?
BRNE ERROR ;else jump to error function
OUT PORTA,R27 ;copy R27 to PORTA

HERE:
RJMP HERE ;wait here forever

ERROR:
RJMP HERE

;***

I2C_INIT:
LDI R21, 0x10 ;load 00010000 into R21
OUT TWAR,R21 ;set address register
LDI R21, (1<<TWEN) ;move 0x04 into R21
OUT TWCR,R21 ;enable the TWI
LDI R21, (1<<TWINT)|(1<<TWEN)|(1<<TWEA)
OUT TWCR,R21 ;enable TWI and ACK(can't be ignored)
RET

;***

I2C_LISTEN:
W1:

IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next intruction if TWINT is 1
RJMP W1 ;jump to W1 if TWINT is 0
RET

;***

I2C_READ:
LDI R21, (1<<TWINT)|(1<<TWEN)|(1<<TWEA)
OUT TWCR, R21 ;configure TWCR to receive TWDR

W2: IN R21, TWCR ;read control register into R21
SBRS R21, TWINT ;skip next line if TWINT is 1
RJMP W2 ;jump to W2 if TWINT is 0
IN R27,TWDR ;move received data into R21
RET

;***
I2C_READ_STATUS:

IN R26, TWSR ;read status register into R21
ANDI R26, 0xF8 ;mask the prescaler bits
RET

Program 18-21 is the C version of Program 18-20. This program receives

a byte of data and displays it on Port A after being addressed by a master device.

651

Program 18-21: Reading a Byte in Slave Mode with Status Checking in C

#include <avr/io.h> //standard AVR header

void i2c_showError(unsigned char er)
{

DDRA = 0xFF;
PORTA = er;

}

//**

unsigned char i2c_readStatus(void)
{

unsigned char i = 0;
i = TWSR & 0xF8;
return i;

}

//**

void i2c_initSlave(unsigned char slaveAddress)
{

TWCR = 0x04; //enable TWI module
TWAR = slaveAddress; //set the slave address
TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWEA);//init. TWI module

}
//***

unsigned char i2c_receive(unsigned char isLast)
{

if (isLast == 0) //if want to read more than 1 byte
TWCR = (1<< TWINT)|(1<<TWEN)|(1<<TWEA);

else //if want to read only one byte
TWCR = (1<< TWINT)|(1<<TWEN);

while ((TWCR & (1 <<TWINT))==0); //wait to complete
return (TWDR);

}

//***

void i2c_listen()
{

while ((TWCR & (1 <<TWINT))==0); //wait to be addressed
}

//***

Review Questions
1. True or false. We can ignore checking the status register when there is more

than one master on the bus.

2. True or false. We can enable the TWI module and generate aSTART condition

at the same time.

3. How can a slave device read the value of the R/W bit when it is being

addressed by a master device?

4. True or false. We can check the status register to see if a STOP condition has

been transmitted successfully.

5. What is the value of the status register when SLA + W is received and ACK

has been returned?

6. What is the value of the status register when SLA + W is transmitted and ACK

has been received?

7. What is the value of the status register when SLA + R is received and ACK has

been returned?

8. What is the value of the status register when SLA + W is transmitted and ACK

has been received?

CHAPTER 18: I2C PROTOCOL AND DS1307 RTC INTERFACING 652

Program 18-21: Reading a Byte in Slave Mode with Status Checking in C (continued)

int main (void)
{

DDRA = 0xFF;
i2c_initSlave(0x10); //init. TWI module as

//slave with address
//0b0001000 and do not
//accept general call

i2c_listen(); //listen to be addressed

unsigned char s,i;
s = i2c_readStatus();
if (s != 0x60)
{

i2c_showError(s);
return 0;

}
i=i2c_receive(0);
s = i2c_readStatus();
if (s != 0x80)
{

i2c_showError(s);
return 0;

}
PORTA = i;
while(1); //stay here forever
return 0;

}

