
649

OVERVIEW

This appendix provides an introduction to writing flowcharts and

pseudocode.

APPENDIX D

FLOWCHARTS AND

PSEUDOCODE

Flowcharts

If you have taken any previous

programming courses, you are probably

familiar with flowcharting. Flowcharts

use graphic symbols to represent differ-

ent types of program operations. These

symbols are connected together into a

flowchart to show the flow of execution

of a program. Figure D-1 shows some of

the more commonly used symbols.

Flowchart templates are available to help

you draw the symbols quickly and neatly.

Pseudocode

Flowcharting has been standard

practice in industry for decades.

However, some find limitations in using

flowcharts, such as the fact that you can't

write much in the little boxes, and it is

hard to get the “big picture” of what the

program does without getting bogged

down in the details. An alternative to

using flowcharts is pseudocode, which

involves writing brief descriptions of the

flow of the code. Figures D-2 through

D-6 show flowcharts and pseudocode for

commonly used control structures.

Structured programming uses

three basic types of program control

structures: sequence, control, and itera-

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 650

Terminal

Process

Input/
Output

Subroutine

Decision

Figure D-1. Commonly Used

Flowchart Symbols

Connector

Figure D-2. SEQUENCE Pseudocode versus Flowchart

Statement 1

Statement 2

Statement 1
Statement 2

tion. Sequence is simply executing instructions one after another. Figure D-2

shows how sequence can be represented in pseudocode and flowcharts.

Figures D-3 and D-4 show two control programming structures: IF-THEN-

ELSE and IF-THEN in both pseudocode and flowcharts.

Note in Figures D-2 through D-6 that “statement” can indicate one state-

ment or a group of statements.

Figures D-5 and D-6 show two iteration control structures: REPEAT

UNTIL and WHILE DO. Both structures execute a statement or group of state-

ments repeatedly. The difference between them is that the REPEAT UNTIL struc-

ture always executes the statement(s) at least once, and checks the condition after

each iteration, whereas the WHILE DO may not execute the statement(s) at all

because the condition is checked at the beginning of each iteration.

APPENDIX D: FLOWCHARTS AND PSEUDOCODE 651

Figure D-3. IF THEN ELSE Pseudocode versus Flowchart

Statement 1 Statement 2

IF (condition) THEN
Statement 1

ELSE
Statement 2

Condition
?

Figure D-4. IF THEN Pseudocode versus Flowchart

Statement

IF (condition) THEN
Statement

Condition
?

Yes

No

Program D-1 finds the sum of a series of bytes. Compare the flowchart ver-

sus the pseudocode for Program D-1 (shown in Figure D-7). In this example, more

program details are given than one usually finds. For example, this shows steps for

initializing and decrementing counters. Another programmer may not include

these steps in the flowchart or pseudocode. It is important to remember that the

purpose of flowcharts or pseudocode is to show the flow of the program and what

the program does, not the specific Assembly language instructions that accomplish

the program's objectives. Notice also that the pseudocode gives the same informa-

tion in a much more compact form than does the flowchart. It is important to note

that sometimes pseudocode is written in layers, so that the outer level or layer

shows the flow of the program and subsequent levels show more details of how

the program accomplishes its assigned tasks.

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 652

Figure D-6. WHILE DO Pseudocode versus Flowchart

WHILE (condition) DO
Statement

Statement

Condition
?

Yes

No

Figure D-5. REPEAT UNTIL Pseudocode versus Flowchart

Statement

REPEAT
Statement

UNTIL (condition)

Condition
?

Yes

No

APPENDIX D: FLOWCHARTS AND PSEUDOCODE 653

Start

Stop

Count = 5
Address = $140

Add one byte

Increment address
pointer

Decrement counter

Store sum

Count
= 0?

Figure D-7. Pseudocode versus Flowchart for Program D-1

Program D-1

Count = 5
Address = $140
Repeat

Add next byte
Increment address
Decrement counter

Until Count = 0

Store Sum

No

Yes

#define COUNTVAL 5 ;COUNT = 5
#define COUNTER R22
#define SUM R23

LDI COUNTER,COUNTVAL ;R22 = 5
CLR SUM ;SUM = 0
LDI R26,LOW($140) ;load pointer to RAM data address
LDI R27,HIGH($140)

L1: LD R24,x+ ;copy RAM to R24 and increment pointer
ADD SUM,R24 ;add R24 to SUM
DEC COUNTER ;decrement counter
BRNE L1 ;loop until counter = zero

HERE: RJMP HERE ;stay here forever

