
695

OVERVIEW

In this appendix, we describe each intruction of the

ATmega32. In many cases, a simple code example is given to

clarify the instruction.

At the end there is a table that shows all the registers and

their bits.

APPENDIX A

AVR INSTRUCTIONS

EXPLAINED

Instructions are Copyright of Atmel Semiconductor, Inc. 2009, Used by Permission

SECTION A.1: INSTRUCTION SUMMARY

DATA TRANSFER INSTRUCTIONS

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 696

Mnemonics Operands Description Operation Flags

MOV Rd, Rr Move Between Registers Rd ← Rr None

MOVW Rd, Rr Copy Register Word Rd + 1:Rd ← Rr + 1:Rr None

LDI Rd, K Load Immediate Rd ← K None

LD Rd, X Load Indirect Rd ← (X) None

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None

LD Rd, –X Load Indirect and Pre-Dec. X ← X – 1, Rd ← (X) None

LD Rd, Y Load Indirect Rd ← (Y) None

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None

LD Rd, –Y Load Indirect and Pre-Dec. Y ← Y – 1, Rd ← (Y) None

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None

LD Rd, Z Load Indirect Rd ← (Z) None

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None

LD Rd, –Z Load Indirect and Pre-Dec. Z ← Z – 1, Rd ← (Z) None

LDD Rd, Z + q Load Indirect with Displacement Rd ← (Z + q) None

LDS Rd, k Load Direct from SRAM Rd ← (k) None

ST X, Rr Store Indirect (X) ← Rr None

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None

ST –X, Rr Store Indirect and Pre-Dec. X ← X – 1, (X) ← Rr None

ST Y, Rr Store Indirect (Y) ← Rr None

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None

ST –Y, Rr Store Indirect and Pre-Dec. Y ← Y – 1, (Y) ← Rr None

STD Y + q, Rr Store Indirect with Displacement (Y + q) ← Rr None

ST Z, Rr Store Indirect (Z) ← Rr None

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None

ST –Z, Rr Store Indirect and Pre-Dec. Z ← Z – 1, (Z) ← Rr None

STD Z + q, Rr Store Indirect with Displacement (Z + q) ← Rr None

STS k, Rr Store Direct to SRAM (k) ← Rr None

LPM Load Program Memory R0 ← (Z) None

LPM Rd, Z Load Program Memory Rd ← (Z) None

LPM Rd, Z+ Load Program Memory and Post-Inc. Rd ← (Z), Z ← Z+1 None

SPM Store Program Memory (Z) ← R1:R0 None

IN Rd, P In Port Rd ← P None

OUT P, Rr Out Port P ← Rr None

PUSH Rr Push Register on Stack Stack ← Rr None

POP Rd Pop Register from Stack Rd ← Stack None

BRANCH INSTRUCTIONS

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 697

Mnem. Oper. Description Operation Flags

RJMP k Relative Jump PC ← PC + k + 1 None

IJMP Indirect Jump to (Z) PC ← Z None

JMP k Direct Jump PC ← k None

RCALL k Relative Subroutine Call PC ← PC + k + 1 None

ICALL Indirect Call to (Z) PC ← Z None

CALL k Direct Subroutine Call PC ← k None

RET Subroutine Return PC ← Stack None

RETI Interrupt Return PC ← Stack I

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None

CP Rd,Rr Compare Rd − Rr Z,N,V,C,H

CPC Rd,Rr Compare with Carry Rd − Rr − C Z,N,V,C,H

CPI Rd,K Compare Register with Immediate Rd − K Z,N,V,C,H

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None

BRBS s, k Branch if Status Flag Set if (SREG(s)=1) then PC←PC+k+1 None

BRBC s, k Branch if Status Flag Cleared if (SREG(s)=0) then PC←PC+k+1 None

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None

BRGE k Branch if Greater or Equal,Signed if (N and V= 0) then PC←PC + k +1 None

BRLT k Branch if Less Than Zero, Signed if (N and V= 1) then PC←PC + k +1 None

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None

BIT AND BIT-TEST INSTRUCTIONS

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 698

Mnem. Operan. Description Operation Flags

SBI P, b Set Bit in I/O Register I/O(P, b) ← 1 None

CBI P, b Clear Bit in I/O Register I/O(P, b) ← 0 None

LSL Rd Logical Shift Left
Rd(n + 1) ← Rd(n),
Rd(0) ← 0 Z,C,N,V

LSR Rd Logical Shift Right
Rd(n)←Rd(n+1),
Rd(7)←0 Z,C,N,V

ROL Rd Rotate Left Through Carry

Rd(0)←C,
Rd(n+1)←Rd(n),
C←Rd(7) Z,C,N,V

ROR Rd Rotate Right Through Carry

Rd(7) ← C,
Rd(n) ← Rd(n + 1),
C ← Rd(0) Z,C,N,V

ASR Rd Arithmetic Shift Right
Rd(n) ← Rd(n + 1),
n = 0..6 Z,C,N,V

SWAP Rd Swap Nibbles
Rd(3..0) ← Rd(7..4),
Rd(7..4) ← Rd(3..0) None

BSET s Flag Set SREG(s) ← 1 SREG(s)

BCLR s Flag Clear SREG(s) ← 0 SREG(s)

BST Rr, b Bit Store from Register to T T ← Rr(b) T

BLD Rd, b Bit load from T to Register Rd(b) ← T None

SEC Set Carry C ← 1 C

CLC Clear Carry C ← 0 C

SEN Set Negative Flag N ←1 N

CLN Clear Negative Flag N ← 0 N

SEZ Set Zero Flag Z ←1 Z

CLZ Clear Zero Flag Z ← 0 Z

SEI Global Interrupt Enable I ← 1 I

CLI Global Interrupt Disable I ← 0 I

SES Set Signed Test Flag S ← 1 S

CLS Clear Signed Test Flag S ← 0 S

SEV Set Two’s Complement Overflow V ← 1 V

CLV Clear Two’s Complement Overflow V ← 0 V

SET Set T in SREG T ← 1 T

CLT Clear T in SREG T ← 0 T

SEH Set Half Carry Flag in SREG H ←1 H

CLH Clear Half Carry Flag in SREG H ← 0 H

ARITHMETIC AND LOGIC INSTRUCTIONS

MCU CONTROL INSTRUCTIONS

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 699

Mnem. Operands Description Operation Flags

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H

ADIW Rdl, K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S

SUB Rd, Rr Subtract two Registers Rd ← Rd – Rr Z,C,N,V,H

SUBI Rd, K Subtract Constant from Register Rd ← Rd – K Z,C,N,V,H

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd – Rr – C Z,C,N,V,H

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd – K – C Z,C,N,V,H

SBIW Rdl, K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl – K Z,C,N,V,S

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V

COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V

NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H

SBR Rd, K Set Bit(s) in Register Rd ← Rd v K Z,N,V

CBR Rd, K Clear Bit(s) in Register Rd ← Rd • ($FF – K) Z,N,V

INC Rd Increment Rd ← Rd + 1 Z,N,V

DEC Rd Decrement Rd ← Rd − 1 Z,N,V

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V

CLR Rd Clear Register Rd ← $00 Z,N,V

SER Rd Set Register Rd ← $FF None

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr)<< 1 Z,C

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr)<< 1 Z,C

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr)<< 1 Z,C

Mnemonics Operands Description Operation Flags

NOP No Operation None

SLEEP Sleep (see specific descr. for Sleep function) None

WDR Watchdog Reset (see specific descr. for WDR/timer) None

BREAK Break For On-Chip Debug Only None

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 700

SECTION A.2: AVR INSTRUCTIONS FORMAT

ADC Rd, Rr ; Add with carry

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd + Rr + C

Adds two registers and the contents of the C flag and places the result in the des-

tination register Rd.

Flags: H, S, V, N, Z, C Cycles: 1

Example: ;Add R1:R0 to R3:R2
add r2,r0 ;Add low byte
adc r3,r1 ;Add with carry high byte

ADD Rd, Rr ; Add without carry

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd + Rr

Adds two registers without the C flag and places the result in the destination reg-

ister Rd.

Flags: H, S, V, N, Z, C Cycles: 1

Example:
add r1,r2 ;Add r2 to r1 (r1=r1+r2)
add r28,r28 ;Add r28 to itself (r28=r28+r28)

ADIW Rd+1:Rd, K ; Add Immediate to Word

d ∈ {24,26,28,30}, 0 ≤ K ≤ 63 ; Rd + 1:Rd ← Rd + 1:Rd + K

Adds an immediate value (0–63) to a register pair and places the result in the reg-

ister pair. This instruction operates on the upper four register pairs, and is well suited for

operations on the pointer registers.

Flags: S, V, N, Z, C Cycles: 2

Example:
adiw r25:24,1 ;Add 1 to r25:r24
adiw ZH:ZL,63 ;Add 63 to the Z-pointer (r31:r30)

AND Rd, Rr ; Logical AND

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd • Rr

Performs the logical AND between the contents of register Rd and register Rr and

places the result in the destination register Rd.

Flags: S, V ← 0, N, Z Cycles: 1

Example:
and r2,r3 ;Bitwise and r2 and r3, result in r2
ldi r16,1 ;Set bitmask 0000 0001 in r16
and r2,r16 ;Isolate bit 0 in r2

ANDI Rd, K ; Logical AND with Immediate

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd ← Rd • K

Performs the logical AND between the contents of register Rd and a constant and

places the result in the destination register Rd.

Flags: S, V ← 0, N, Z Cycles: 1

Example:
andi r17,$0F ;Clear upper nibble of r17
andi r18,$10 ;Isolate bit 4 in r18

ASR Rd ; Arithmetic Shift Right

0 ≤ d ≤ 31

Shifts all bits in Rd one place to the right. Bit 7

is held constant. Bit 0 is loaded into the C flag of the

SREG. This operation effectively divides a signed value

by two without changing its sign. The Carry flag can be used to round the result.

Flags: S, V, N, Z, C Cycles: 1

Example:
ldi r16,$10 ;Load decimal 16 into r16
asr r16 ;r16=r16 / 2
ldi r17,$FC ;Load -4 in r17
asr r17 ;r17=r17/2

BCLR s ; Bit Clear in SREG

0 ≤ s ≤7 ; SREG(s) ← 0

Clears a single flag in SREG (Status Register).

Flags: I, T, H, S, V, N, Z, C Cycles: 1

Example:
bclr 0 ;Clear Carry flag
bclr 7 ;Disable interrupts

BLD Rd, b ; Bit Load from the T Flag in SREG to a Bit in Register

0 ≤ d ≤ 31, 0 ≤ b ≤7 ; Rd(b) ← T

Copies the T flag in the SREG (Status Register) to bit b in register Rd.

Flags: --- Cycles: 1

Example:
bst r1,2 ;Store bit 2 of r1 in T flag
bld r0,4 ;Load T flag into bit 4 of r0

BRBC s, k ; Branch if Bit in SREG is Cleared

0 ≤ s ≤ 7, –64 ≤ k ≤ +63 ; If SREG(s) = 0 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests a single bit in SREG (Status Register) and

branches relatively to PC if the bit is set.

Flags: --- Cycles: 1or 2

Example:
cpi r20,5 ;Compare r20 to the value 5
brbc 1,noteq ;Branch if Zero flag cleared
...

noteq:nop ;Branch destination (do nothing)

BRBS s, k ; Branch if Bit in SREG is Set

0 ≤ s ≤ 7, –64 ≤ k ≤ +63 ; If SREG(s) = 1 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests a single bit in SREG (Status Register) and

branches relatively to PC if the bit is set.

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 701

Flags: --- Cycles: 1 or 2

Example:
bst r0,3 ;Load T bit with bit 3 of r0
brbs 6,bitset ;Branch T bit was set
...
bitset: nop ;Branch destination (do nothing)

BRCC k ; Branch if Carry Cleared

–64 ≤ k ≤ +63 ; If C = 0 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC

if C is cleared.

Flags: --- Cycles: 1 or 2

Example:
add r22,r23 ;Add r23 to r22
brcc nocarry ;Branch if carry cleared
...

nocarry: nop ;Branch destination (do nothing)

BRCS k ; Branch if Carry Set

–64 ≤ k ≤ +63 ; If C = 1 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC

if C is set.

Flags: --- Cycles: 1 or 2

Example:
cpi r26,$56 ;Compare r26 with $56
brcs carry ;Branch if carry set
...

carry: nop ;Branch destination (do nothing)

BREAK ; Break

The BREAK instruction is used by the on-chip debug system, and is normally not

used in the application software. When the BREAK instruction is executed, the AVR CPU

is set in the stopped mode. This gives the on-chip debugger access to internal resources.

Flags: --- Cycles: 1

Example: ---

BREQ k ; Branch if Equal

–64 ≤ k ≤ +63 ; If Rd = Rr (Z = 1) then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC

if Z is set. If the instruction is executed immediately after any of the instructions CP, CPI,

SUB, or SUBI, the branch will occur if and only if the unsigned or signed binary number

represented in Rd was equal to the unsigned or signed binary number represented in Rr.

Flags: --- Cycles: 1 or 2

Example:
ccp r1,r0 ;Compare registers r1 and r0
breq equal ;Branch if registers equal
...

equal: nop ;Branch destination (do nothing)

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 702

BRGE k ; Branch if Greater or Equal (Signed)

–64 ≤ k ≤ +63 ; If Rd ≥ Rr (N⊕V = 0) then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Signed flag (S) and branches relatively to PC

if S is cleared. If the instruction is executed immediately after any of the instructions CP,

CPI, SUB, or SUBI, the branch will occur if and only if the signed binary number repre-

sented in Rd was greater than or equal to the signed binary number represented in Rr.

Flags: --- Cycles: 1 or 2

Example:
cp r11,r12 ;Compare registers r11 and r12
brge greateq ;Branch if r11 ≥ r12 (signed)
...

greateq: nop ;Branch destination (do nothing)

BRHC k ; Branch if Half Carry Flag is Cleared

–64 ≤ k ≤ +63 ; If H = 0 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Half Carry flag (H) and branches relatively

to PC if H is cleared.

Flags: --- Cycles: 1 or 2

Example:
brhc hclear ;Branch if Half Carry flag cleared
...

hclear: nop ;Branch destination (do nothing)

BRHS k ; Branch if Half Carry Flag is Set

–64 ≤ k ≤ +63 ; If H = 1 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Half Carry flag (H) and branches relatively

to PC if H is set.

Flags: --- Cycles: 1 or 2

Example:
brhs hset ;Branch if Half Carry flag set
...

hset: nop ;Branch destination (do nothing)

BRID k ; Branch if Global Interrupt is Disabled

–64 ≤ k ≤ +63 ; If I = 0 then PC←PC + k + 1, else PC←PC + 1

Conditional relative branch. Tests the Global Interrupt flag (I) and branches rela-

tively to PC if I is cleared.

Flags: --- Cycles: 1 or 2

Example:
brid intdis ;Branch if interrupt disabled
...

intdis: nop ;Branch destination (do nothing)

BRIE k ; Branch if Global Interrupt is Enabled

–64 ≤ k ≤ +63 ; If I = 1 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Global Interrupt flag (I) and branches rela-

tively to PC if I is set.

Flags: --- Cycles: 1 or 2

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 703

Example:
brie inten ;Branch if interrupt enabled
...

inten: nop ;Branch destination (do nothing)

BRLO k ; Branch if Lower (Unsigned)

–64 ≤ k ≤ +63 ; If Rd < Rr (C = 1) then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC

if C is set. If the instruction is executed immediately after any of the instructions CP, CPI,

SUB, or SUBI, the branch will occur if and only if the unsigned binary number represent-

ed in Rd was smaller than the unsigned binary number represented in Rr.

Flags: --- Cycles: 1 or 2

Example:
eor r19,r19 ;Clear r19

loop: inc r19 ;Increment r19
...
cpi r19,$10 ;Compare r19 with $10
brlo loop ;Branch if r19 < $10 (unsigned)
nop ;Exit from loop (do nothing)

BRLT k ; Branch if Less Than (Signed)

–64 ≤ k ≤ +63 ; If Rd < Rr (N ⊕V = 1) then PC← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Signed flag (S) and branches relatively to

PC if S is set. If the instruction is executed immediately after any of the instructions CP,

CPI, SUB, or SUBI, the branch will occur if and only if the signed binary number repre-

sented in Rd was less than the signed binary number represented in Rr.

Flags: --- Cycles: 1 or 2

Example:
bcp r16,r1 ;Compare r16 to r1
brlt less ;Branch if r16 < r1 (signed)
...

less: nop ;Branch destination (do nothing)

BRMI k ; Branch if Minus

–64 ≤ k ≤ +63 ; If N=1 then PC←PC + k + 1, else PC←PC + 1

Conditional relative branch. Tests the Negative flag (N) and branches relatively to

PC if N is set.

Flags: --- Cycles: 1 or 2

Example:
subi r18,4 ;Subtract 4 from r18
brmi negative ;Branch if result negative
...

negative: nop ;Branch destination (do nothing)

BRNE k ; Branch if Not Equal

–64 ≤ k ≤ +63 ; If Rd ≠ Rr (Z = 0) then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Zero flag (Z) and branches relatively to PC

if Z is cleared. If the instruction is executed immediately after any of the instructions CP,

CPI, SUB, or SUBI, the branch will occur if and only if the unsigned or signed binary

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 704

number represented in Rd was not equal to the unsigned or signed binary number repre-

sented in Rr.

Flags: --- Cycles: 1 or 2

Example:
eor r27,r27 ;Clear r27

loop: inc r27 ;Increment r27
...
cpi r27,5 ;Compare r27 to 5
brne loop ;Branch if r27 not equal 5
nop ;Loop exit (do nothing)

BRPL k ; Branch if Plus

–64 ≤ k ≤ +63 ; If N = 0 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Negative flag (N) and branches relatively to

PC if N is cleared.

Flags: --- Cycles: 1 or 2

Example:
subi r26,$50 ;Subtract $50 from r26
brpl positive ;Branch if r26 positive
...

positive: nop ;Branch destination (do nothing)

BRSH k ; Branch if Same or Higher (Unsigned)

–64 ≤ k ≤ +63 ; If Rd ≥Rr (C = 0) then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Carry flag (C) and branches relatively to PC

if C is cleared. If the instruction is executed immediately after execution of any of the

instructions CP, CPI, SUB, or SUBI, the branch will occur if and only if the unsigned bina-

ry number represented in Rd was greater than or equal to the unsigned binary number rep-

resented in Rr.

Flags: --- Cycles: 1 or 2

Example:
subi r19,4 ;Subtract 4 from r19
brsh highsm ;Branch if r19 >= 4 (unsigned)
...

highsm: nop ;Branch destination (do nothing)

BRTC k ; Branch if the T Flag is Cleared

–64 ≤ k ≤ +63 ; If T = 0 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the T flag and branches relatively to PC if T is

cleared.

Flags: --- Cycles: 1 or 2

Example:
bst r3,5 ;Store bit 5 of r3 in T flag
brtc tclear ;Branch if this bit was cleared
...

tclear: nop ;Branch destination (do nothing)

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 705

BRTS k ; Branch if the T Flag is Set

–64 ≤ k ≤ +63 ; If T = 1 then PC←PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the T flag and branches relatively to PC if T is

set.

Flags: --- Cycles: 1 or 2

Example:
bst r3,5 ;Store bit 5 of r3 in T flag
brts tset ;Branch if this bit was set
...

tset: nop ;Branch destination (do nothing)

BRVC k ; Branch if Overflow Cleared

–64 ≤ k ≤ +63 ; If V = 0 then PC ← PC + k + 1, else PC ← PC + 1

Conditional relative branch. Tests the Overflow flag (V) and branches relatively

to PC if V is cleared.

Flags: --- Cycles: 1 or 2

Example:
add r3,r4 ;Add r4 to r3
brvc noover ;Branch if no overflow
...

noover: nop ;Branch destination (do nothing)

BRVS k ; Branch if Overflow Set

–64 ≤ k ≤ +63 ; If V=1 then PC←PC + k + 1, else PC←PC + 1

Conditional relative branch. Tests the Overflow flag (V) and branches relatively

to PC if V is set.

Flags: --- Cycles: 1 or 2

Example:
add r3,r4 ;Add r4 to r3
brvs overfl ;Branch if overflow
...

overfl: nop ;Branch destination (do nothing)

BSET s ; Bit Set in SREG

0 ≤ s ≤ 7 ; SREG(s) ← 1

Sets a single flag or bit in SREG (Status Register).

Flags: Any of the flags. Cycles: 1

Example:
bset 6 ;Set T flag
bset 7 ;Enable interrupt

BST Rd,b ; Bit Store from Register to T Flag in SREG

0 ≤ d ≤ 31, 0 ≤ b ≤ 7 ; T ← Rd(b)

Stores bit b from Rd to the T flag in SREG (Status Register).

Flags: T Cycles: 1

Example: ;Copy bit
bst r1,2 ;Store bit 2 of r1 in T flag
bld r0,4 ;Load T into bit 4 of r0t

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 706

CALL k ; Long Call to a Subroutine

0 ≤ k < 64K (Devices with 16 bits PC) or 0 ≤ k < 4M (Devices with 22 bits PC)

Calls to a subroutine within the entire program memory. The return address (to the

instruction after the CALL) will be stored onto the stack. (See also RCALL.) The stack

pointer uses a post-decrement scheme during CALL.

Flags: --- Cycles: 4

Example:
mov r16,r0 ;Copy r0 to r16
call check ;Call subroutine
nop ;Continue (do nothing)
...

check: cpi r16,$42 ;Check if r16 has a special value
breq error ;Branch if equal
ret ;Return from subroutine
...

error: rjmp error ;Infinite loop

CBI A, b ; Clear Bit in I/O Register

0 ≤ A ≤ 31, 0 ≤ b ≤7 ; I/O(A,b) ← 0

Clears a specified bit in an I/O Register. This instruction operates on the lower 32

I/O registers (addresses 0–31).

Flags: --- Cycles: 2

Example:
cbi $12,7 ;Clear bit 7 in Port D

CBR Rd, k ; Clear Bits in Register

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd ← Rd • ($FF – K)

Clears the specified bits in register Rd. Performs the logical AND between the con-

tents of register Rd and the complement of the constant mask K.

Flags: S, N, V ← 0, Z Cycles: 1

Example:
cbr r16,$F0 ;Clear upper nibble of r16
cbr r18,1 ;Clear bit 0 in r18

CLC ; Clear Carry Flag

; C ← 0

Clears the Carry flag (C) in SREG (Status Register).

Flags: C ← 0. Cycles: 1

Example:
add r0,r0 ;Add r0 to itself
clc ;Clear Carry flag

CLH ; Clear Half Carry Flag

; H ← 0

Clears the Half Carry flag (H) in SREG (Status Register).

Flags: H ← 0. Cycles: 1

Example:
clh ;Clear the Half Carry flag

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 707

CLI ; Clear Global Interrupt Flag

; I ← 0

Clears the Global Interrupt flag (I) in SREG (Status Register). The interrupts will

be immediately disabled. No interrupt will be executed after the CLI instruction, even if

it occurs simultaneously with the CLI instruction.

Flags: I ← 0. Cycles: 1

Example:
in temp, SREG ;Store SREG value

;(temp must be defined by user)
cli ;Disable interrupts during timed sequence
sbi EECR, EEMWE ;Start EEPROM write
sbi EECR, EEWE ;
out SREG, temp ;Restore SREG value (I-flag)

CLN ; Clear Negative Flag

; N ← 0

Clears the Negative flag (N) in SREG (Status Register).

Flags: N ← 0. Cycles: 1

Example:
add r2,r3 ;Add r3 to r2
cln ;Clear Negative flag

CLR Rd ; Clear Register

0 ≤ d ≤ 31 ; Rd ← Rd ⊕ Rd

Clears a register. This instruction performs an Exclusive-OR between a register

and itself. This will clear all bits in the register..

Flags: S ← 0 , N ← 0, V ← 0, Z ← 0 Cycles: 1

Example:
clr r18 ;Clear r18

loop: inc r18 ;Increment r18
...
cpi r18,$50 ;Compare r18 to $50
brne loop

CLS ; Clear Signed Flag

; S ← 0

Clears the Signed flag (S) in SREG (Status Register).

Flags: S ← 0. Cycles: 1

Example:
add r2,r3 ;Add r3 to r2
cls ;Clear Signed flag

CLT ; Clear T Flag

; T ← 0

Clears the T flag in SREG (Status Register).

Flags: T ← 0. Cycles: 1

Example:
clt ;Clear T flag

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 708

CLV ; Clear Overflow Flag

; V ← 0

Clears the Overflow flag (V) in SREG (Status Register).

Flags: V ← 0. Cycles: 1

Example:
add r2,r3 ;Add r3 to r2
clv ;Clear Overflow flag

CLZ ; Clear Zero Flag

; Z ← 0

Clears the Zero flag (Z) in SREG (Status Register).

Flags: Z ← 0. Cycles: 1

Example:
clz ;Clear zero

COM Rd ; One’s Complement

0 ≤ d ≤ 31 ; Rd ← $FF – Rd

This instruction performs a one’s complement of register Rd.

Flags: S, V ← 0, N , Z ← 1, C. Cycles: 1

Example:
com r4 ;Take one’s complement of r4
breq zero ;Branch if zero
...

zero: nop ;Branch destination (do nothing)

CP Rd,Rr ; Compare

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd – Rr

This instruction performs a compare between two registers, Rd and Rr. None of the

registers are changed. All conditional branches can be used after this instruction.

Flags: H, S,V, N, Z, C. Cycles: 1

Example:

cp r4,r19 ;Compare r4 with r19
brne noteq ;Branch if r4 not equal r19
...

noteq: nop ;Branch destination (do nothing)

CPC Rd,Rr ; Compare with Carry

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd – Rr – C

This instruction performs a compare between two registers, Rd and Rr, and also

takes into account the previous carry. None of the registers are changed. All conditional

branches can be used after this instruction.

Flags: H, S, V, N, Z, C. Cycles: 1

Example: ;Compare r3:r2 with r1:r0
cp r2,r0 ;Compare low byte
cpc r3,r1 ;Compare high byte
brne noteq ;Branch if not equal
...

noteq: nop ;Branch destination (do nothing)

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 709

CPI Rd,K ; Compare with Immediate

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd – K

This instruction performs a compare between register Rd and a constant. The reg-

ister is not changed. All conditional branches can be used after this instruction.

Flags: H, S,V, N, Z, C. Cycles: 1

Example:
cpi r19,3 ;Compare r19 with 3
brne error ;Branch if r19 not equal 3
...

error: nop ;Branch destination (do nothing)

CPSE Rd,Rr ; Compare Skip if Equal

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; If Rd = Rr then PC ← PC + 2 or 3 else PC ← PC + 1

This instruction performs a compare between two registers Rd and Rr, and skips

the next instruction if Rd = Rr.

Flags:--- Cycles: 1, 2, or 3

Example:
inc r4 ;Increment r4
cpse r4,r0 ;Compare r4 to r0
neg r4 ;Only executed if r4 not equal r0
nop ;Continue (do nothing)

DEC Rd ; Decrement

0 ≤ d ≤ 31 ; Rd ← Rd – 1

Subtracts one from the contents of register Rd and places the result in the destina-

tion register Rd.

The C flag in SREG is not affected by the operation, thus allowing the DEC

instruction to be used on a loop counter in multiple-precision computations.

When operating on unsigned values, only BREQ and BRNE branches can be

expected to perform consistently. When operating on two’s complement values, all signed

branches are available.

Flags: S,V, N, Z. Cycles: 1

Example:
ldi r17,$10 ;Load constant in r17

loop: add r1,r2 ;Add r2 to r1
dec r17 ;Decrement r17
brne loop ;Branch if r17 not equal 0
nop ;Continue (do nothing)

EOR Rd,Rr ; Exclusive OR

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd ⊕ Rr

Performs the logical Exclusive OR between the contents of register Rd and regis-

ter Rr and places the result in the destination register Rd.

Flags: S, V, Z ← 0, N, Z. Cycles: 1

Example:
eor r4,r4 ;Clear r4
eor r0,r22 ;Bitwise XOR between r0 and r22

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 710

FMUL Rd,Rr ; Fractional Multiply Unsigned

16 ≤ d ≤ 23, 16 ≤ r ≤ 23 ; R1:R0 ← Rd × Rr (unsigned ← unsigned × unsigned)

This instruction performs 8-bit × 8-bit → 16-bit unsigned multiplication and shifts

the result one bit left.

Let (N.Q) denote a fractional number with N binary digits left of the radix point,

and Q binary digits right of the radix point. A multiplication between two numbers in the

formats (N1.Q1) and (N2.Q2) results in the format ((N1 + N2).(Q1 + Q2)). For signal pro-

cessing applications, the (1.7) format is widely used for the inputs, resulting in a (2.14)

format for the product. A left shift is required for the high byte of the product to be in the

same format as the inputs. The FMUL instruction incorporates the shift operation in the

same number of cycles as MUL.

The (1.7) format is most commonly used with signed numbers, while FMUL per-

forms an unsigned multiplication. This instruction is therefore most useful for calculating

one of the partial products when performing a signed multiplication with 16-bit inputs in

the (1.15) format, yielding a result in the (1.31) format. (Note: The result of the FMUL

operation may suffer from a 2’s complement overflow if interpreted as a number in the

(1.15) format.) The MSB of the multiplication before shifting must be taken into account,

and is found in the carry bit. See the following example.

The multiplicand Rd and the multiplier Rr are two registers containing unsigned

fractional numbers where the implicit radix point lies between bit 6 and bit 7. The 16-bit

unsigned fractional product with the implicit radix point between bit 14 and bit 15 is

placed in R1 (high byte) and R0 (low byte).

Flags: Z, C. Cycles: 2

Example:
;**
;* DESCRIPTION
;* Signed fractional multiply of two 16-bit numbers with 32-bit result.
;* r19:r18:r17:r16 = (r23:r22 * r21:r20) << 1
;**

fmuls 16x16_32:
clr r2
fmuls r23, r21 ;((signed)ah *(signed)bh) << 1
movw r19:r18, r1:r0
fmul r22, r20 ;(al * bl) << 1
adc r18, r2
movwr17:r16, r1:r0
fmulsu r23, r20 ;((signed)ah * bl) << 1
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2
fmulsu r21, r22 ;((signed)bh * al) << 1
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 711

FMULS Rd,Rr ; Fractional Multiply Signed

16 ≤ d ≤ 23, 16 ≤ r ≤ 23 ; R1:R0 ← Rd × Rr (signed ← signed × signed)

This instruction performs 8-bit × 8-bit → 16-bit signed multiplication and shifts

the result one bit left.

Let (N.Q) denote a fractional number with N binary digits left of the radix point,

and Q binary digits right of the radix point. A multiplication between two numbers in the

formats (N1.Q1) and (N2.Q2) results in the format ((N1 + N2).(Q1 + Q2)). For signal pro-

cessing applications, the (1.7) format is widely used for the inputs, resulting in a (2.14)

format for the product. A left shift is required for the high byte of the product to be in the

same format as the inputs. The FMULS instruction incorporates the shift operation in the

same number of cycles as MULS.

The multiplicand Rd and the multiplier Rr are two registers containing signed

fractional numbers where the implicit radix point lies between bit 6 and bit 7. The 16-bit

signed fractional product with the implicit radix point between bit 14 and bit 15 is placed

in R1 (high byte) and R0 (low byte).

Note that when multiplying 0x80 (–1) with 0x80 (–1), the result of the shift oper-

ation is 0x8000 (–1). The shift operation thus gives a two’s complement overflow. This

must be checked and handled by software.

This instruction is not available in all devices. Refer to the device-specific instruc-

tion set summary.

Flags: Z, C. Cycles: 2

Example:
fmuls r23,r22 ;Multiply signed r23 and r22 in

;(1.7) format, result in (1.15) format
movw r23:r22,r1:r0 ;Copy result back in r23:r22

FMULSU Rd,Rr ; Fractional Multiply Signed with Unsigned

16 ≤ d ≤ 23, 16 ≤ r ≤ 23 ; R1:R0 ← Rd × Rr

This instruction performs 8-bit × 8-bit → 16-bit signed multiplication and shifts

the result one bit left.

Let (N.Q) denote a fractional number with N binary digits left of the radix point,

and Q binary digits right of the radix point. A multiplication between two numbers in the

formats (N1.Q1) and (N2.Q2) results in the format ((N1 + N2).(Q1 + Q2)). For signal pro-

cessing applications, the (1.7) format is widely used for the inputs, resulting in a (2.14)

format for the product. A left shift is required for the high byte of the product to be in the

same format as the inputs. The FMULSU instruction incorporates the shift operation in

the same number of cycles as MULSU.

The (1.7) format is most commonly used with signed numbers, while FMULSU

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 712

performs a multiplication with one unsigned and one signed input. This instruction is

therefore most useful for calculating two of the partial products when performing a signed

multiplication with 16-bit inputs in the (1.15) format, yielding a result in the (1.31) for-

mat. (Note: The result of the FMULSU operation may suffer from a 2's complement over-

flow if interpreted as a number in the (1.15) format.) The MSB of the multiplication before

shifting must be taken into account, and is found in the carry bit. See the following exam-

ple.

The multiplicand Rd and the multiplier Rr are two registers containing fractional

numbers where the implicit radix point lies between bit 6 and bit 7. The multiplicand Rd

is a signed fractional number, and the multiplier Rr is an unsigned fractional number. The

16-bit signed fractional product with the implicit radix point between bit 14 and bit 15 is

placed in R1 (high byte) and R0 (low byte).

This instruction is not available in all devices. Refer to the device-specific instruc-

tion set summary.

Flags: Z, C. Cycles: 2

Example:
;***
;* DESCRIPTION
;* Signed fractional multiply of two 16-bit numbers with 32-bit result.
;* r19:r18:r17:r16 = (r23:r22 * r21:r20) << 1
;***
fmuls16x16_32:

clrr2
fmuls r23, r21 ;((signed)ah * (signed)bh) << 1
movwr19:r18, r1:r0
fmul r22, r20 ;(al * bl) << 1
adc r18, r2
movwr17:r16, r1:r0
fmulsu r 23, r20 ;((signed)ah * bl) << 1
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2
fmulsu r21, r22 ;((signed)bh * al) << 1
sbc r19, r2
add r17, r0
adc r18, r1
adc r19, r2

ICALL ; Indirect Call to Subroutine

Indirect call of a subroutine pointed to by the Z (16 bits) pointer register in the reg-

ister file. The Z-pointer register is 16 bits wide and allows calls to a subroutine within the

lowest 64K words (128K bytes) section in the program memory space. The stack pointer

uses a post-decrement scheme during ICALL.

This instruction is not available in all devices. Refer to the device-specific instruc-

tion set summary.

Flags: --- Cycles: 3

Example:
mov r30,r0 ;Set offset to call table
icall ;Call routine pointed to by r31:r30

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 713

IJMP ; Indirect Jump

Indirect jump to the address pointed to by the Z (16 bits) pointer register in the

register file. The Z-pointer register is 16 bits wide and allows jumps within the lowest

64K words (128K bytes) of the program memory.

This instruction is not available in all devices. Refer to the device-specific instruc-

tion set summary.

Flags:--- Cycles: 2

Example:
mov r30,r0 ;Set offset to jump table
ijmp ;Jump to routine pointed to by r31:r30

IN Rd,A ; Load an I/O Location to Register

0 ≤ d ≤ 31, 0 ≤ A ≤ 63 ; Rd ← I/O(A)

Loads data from the I/O space (ports, timers, configuration registers, etc.) into reg-

ister Rd in the register file.

Flags:--- Cycles: 1

Example:
in r25,$16 ;Read Port B
cpi r25,4 ;Compare read value to constant
breq exit ;Branch if r25=4
...

exit: nop ;Branch destination (do nothing)

INC Rd ; Increment

0 ≤ d ≤ 31 ; Rd ← Rd + 1

Adds one to the contents of register Rd and places the result in the destination reg-

ister Rd.

The C flag in SREG is not affected by the operation, thus allowing the INC

instruction to be used on a loop counter in multiple-precision computations.

When operating on unsigned numbers, only BREQ and BRNE branches can be

expected to perform consistently. When operating on two’s complement values, all signed

branches are available.

Flags: S, V, N, Z. Cycles: 1

Example:
clr r22 ;Clear r22

loop: inc r22 ;Increment r22
...
cpi r22,$4F ;Compare r22 to $4f
brne loop ;Branch if not equal
nop ;Continue (do nothing)

JMP k ; Jump

0 ≤ k < 4M ; PC ← k

Jump to an address within the entire 4M (words) program memory. See also

RJMP.

Flags:--- Cycles: 3

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 714

Example:
mov r1,r0 ;Copy r0 to r1
jmp farplc ;Unconditional jump
...

farplc: nop ;Jump destination (do nothing)

LD ; Load Indirect from Data Space to Register

; using Index X

Loads one byte indirect from the data space to a register. For parts with SRAM, the

data space consists of the register file, I/O memory, and internal SRAM (and external

SRAM if applicable). For parts without SRAM, the data space consists of the register file

only. The EEPROM has a separate address space.

The data location is pointed to by the X (16 bits) pointer register in the register file.

Memory access is limited to the current data segment of 64K bytes. To access another data

segment in devices with more than 64K bytes data space, the RAMPX in register in the

I/O area has to be changed.

The X-pointer register can either be left unchanged by the operation, or it can be

post-incremented or pre-decremented.

These features are especially suited for accessing arrays, tables, and stack pointer

usage of the X-pointer register. Note that only the low byte of the X-pointer is updated in

devices with no more than 256 bytes data space. For such devices, the high byte of the

pointer is not used by this instruction and can be used for other purposes. The RAMPX

register in the I/O area is updated in parts with more than 64K bytes data space or more

than 64K bytes program memory, and the increment/ decrement is added to the entire 24-

bit address on such devices.

Syntax: Operation: Comment:

(i) LD Rd, X Rd ← (X) X: Unchanged

(ii) LD Rd, X+ Rd ← (X) , X ← X + 1 X: Post-incremented

(iii) LD Rd, –X X ← X – 1, Rd ← (X) X: Pre-decremented

Flags:--- Cycles: 2

Example:
clr r27 ;Clear X high byte
ldi r26,$60 ;Set X low byte to $60
ld r0,X+ ;Load r0 with data space loc. $60

;X post inc)
ld r1,X ;Load r1 with data space loc. $61
ldi r26,$63 ;Set X low byte to $63
ld r2,X ;Load r2 with data space loc. $63
ld r3,–X ;Load r3 with data space loc.

;$62(X pre dec)

LD (LDD) ; Load Indirect from Data Space to Register

; using Index Y

Loads one byte indirect with or without displacement from the data space to a reg-

ister. For parts with SRAM, the data space consists of the register file, I/O memory, and

internal SRAM (and external SRAM if applicable). For parts without SRAM, the data

space consists of the register file only. The EEPROM has a separate address space.

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 715

The data location is pointed to by the Y (16 bits) pointer register in the register file.

Memory access is limited to the current data segment of 64K bytes. To access another data

segment in devices with more than 64K bytes data space, the RAMPY in register in the

I/O area has to be changed.

The Y-pointer register can either be left unchanged by the operation, or it can be

post-incremented or pre-decremented. These features are especially suited for accessing

arrays, tables, and stack pointer usage of the Y-pointer register. Note that only the low byte

of the Y-pointer is updated in devices with no more than 256 bytes data space. For such

devices, the high byte of the pointer is not used by this instruction and can be used for

other purposes. The RAMPY register in the I/O area is updated in parts with more than

64K bytes data space or more than 64K bytes program memory, and the increment/ decre-

ment/displacement is added to the entire 24-bit address on such devices.

Syntax: Operation: Comment:

(i) LD Rd, Y Rd ← (Y) Y: Unchanged

(ii) LD Rd, Y+ Rd ← (Y) ,Y ← Y + 1 Y: Postincremented

(iii) LD Rd, –Y Y ← Y – 1, Rd ← (Y) Y: Predecremented

(iiii) LDD Rd, Y + q Rd ← (Y + q) Y: Unchanged, q: Displacement

Flags:--- Cycles: 2

Example:
clr r29 ;Clear Y high byte
ldi r28,$60 ;Set Y low byte to $60
ld r0,Y+ ;Load r0 with data space loc. $60(Y post inc)
ld r1,Y ;Load r1 with data space loc. $61
ldi r28,$63 ;Set Y low byte to $63
ld r2,Y ;Load r2 with data space loc. $63
ld r3,-Y ;Load r3 with data space loc. $62(Y pre dec)
ldd r4,Y+2 ;Load r4 with data space loc. $64

LD (LDD) ; Load Indirect from Data Space to Register

; using Index Z

Loads one byte indirect with or without displacement from the data space to a reg-

ister. For parts with SRAM, the data space consists of the register file, I/O memory, and

internal SRAM (and external SRAM if applicable). For parts without SRAM, the data

space consists of the register file only. The EEPROM has a separate address space.

The data location is pointed to by the Z (16 bits) pointer register in the register file.

Memory access is limited to the current data segment of 64K bytes. To access another data

segment in devices with more than 64K bytes data space, the RAMPZ in register in the

I/O area has to be changed.

The Z-pointer register can either be left unchanged by the operation, or it can be

post-incremented or pre-decremented. These features are especially suited for stack point-

er usage of the Z-pointer register, however because the Z-pointer register can be used for

indirect subroutine calls, indirect jumps, and table lookup, it is often more convenient to

use the X or Y-pointer as a dedicated stack pointer. Note that only the low byte of the Z-

pointer is updated in devices with no more than 256 bytes data space. For such devices,

the high byte of the pointer is not used by this instruction and can be used for other pur-

poses. The RAMPZ register in the I/O area is updated in parts with more than 64K bytes

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 716

data space or more than 64K bytes program memory, and the increment/decrement/dis-

placement is added to the entire 24-bit address on such devices.

Syntax: Operation: Comment:

(i) LD Rd, Z Rd ← (Z) Z: Unchanged

(ii) LD Rd, Z+ Rd ← (Z) Z ← Z + 1 Z: Postincrement

(iii) LD Rd, –Z Z ← Z – 1 Rd ← (Z) Z: Predecrement

(iiii) LDD Rd, Z + q Rd ← (Z + q) Z: Unchanged, q: Displacement

Flags:--- Cycles: 2

Example:
clr r31 ;Clear Z high byte
ldi r30,$60 ;Set Z low byte to $60
ld r0,Z+ ;Load r0 with data space loc.$60(Z postinc.)
ld r1,Z ;Load r1 with data space loc. $61
ldi r30,$63 ;Set Z low byte to $63
ld r2,Z ;Load r2 with data space loc. $63
ld r3,-Z ;Load r3 with data space loc. $62(Z predec.)
ldd r4,Z+2 ;Load r4 with data space loc. $64

LDI Rd,K ; Load Immediate

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd ← K

Loads an 8-bit constant directly to registers 16 to 31.

Flags:--- Cycles: 1

Example:
clr r31 ;Clear Z high byte
ldi r30,$F0 ;Set Z low byte to $F0
lpm ;Load constant from program

;memory pointed to by Z

LDS Rd,k ; Load Direct from Data Space

0 ≤ d ≤ 31, 0 ≤ k ≤ 65535 ; Rd ← (k)

Loads one byte from the data space to a register. The data space consists of the reg-

ister file, I/O memory, and SRAM.

Flags:--- Cycles: 2

Example:
lds r2,$FF00 ;Load r2 with the contents of

;data space location $FF00
add r2,r1 ;add r1 to r2
sts $FF00,r2 ;Write back

LPM ; Load Program Memory

Loads one byte pointed to by the Z-register into the destination register Rd. This

instruction features a 100% space effective constant initialization or constant data fetch.

The program memory is organized in 16-bit words while the Z-pointer is a byte address.

Thus, the least significant bit of the Z-pointer selects either the low byte (ZLSB = 0) or

the high byte (ZLSB = 1). This instruction can address the first 64K bytes (32K words) of

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 717

program memory. The Z-pointer register can either be left unchanged by the operation, or

it can be incremented. The incrementation does not apply to the RAMPZ register.

Devices with self-programming capability can use the LPM instruction to read the

Fuse and Lock bit values. Refer to the device documentation for a detailed description.

Syntax: Operation: Comment:

(i) LPM R0 ← (Z) Z: Unchanged, R0 implied Rd

(ii) LPM Rd, Z Rd ← (Z) Z: Unchanged

(iii) LPM Rd, Z+ Rd ← (Z), Z ← Z + 1Z: Postincremented

Flags:--- Cycles: 3

Example:
ldi ZH, high(Table_1<<1);Initialize Z-pointer
ldi ZL, low(Table_1<<1)
lpm r16, Z ;Load constant from program

;Memory pointed to by Z (r31:r30)
...

Table_1:
.dw 0x5876 ;0x76 is addresses when ZLSB = 0

;0x58 is addresses when ZLSB = 1
...

LSL Rd ; Logical Shift Left

0 ≤ d ≤ 31

Shifts all bits in Rd one place to

the left. Bit 0 is cleared. Bit 7 is loaded

into the C flag of the SREG (Status

Register). This operation effectively multiplies signed and unsigned values by two.

Flags: H, S, V, N, Z, C. Cycles: 1

Example:
add r0,r4 ;Add r4 to r0
lsl r0 ;Multiply r0 by 2

LSR Rd ; Logical Shift Left

0 ≤ d ≤ 31

Shifts all bits in Rd one place to the

right. Bit 7 is cleared. Bit 0 is loaded into

the C flag of the SREG. This operation

effectively divides an unsigned value by two. The C flag can be used to round the result.

Flags: S, V, N ← 0, Z, C. Cycles: 1

Example:
add r0,r4 ;Add r4 to r0
lsr r0 ;Divide r0 by 2

MOV Rd,Rr ; Copy Register

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rr

This instruction makes a copy of one register into another. The source register Rr

is left unchanged, while the destination register Rd is loaded with a copy of Rr.

Flags: --- Cycles: 1

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 718

Example:
mov r16,r0 ;Copy r0 to r16
call check ;Call subroutine
...

check: cpi r16,$11 ;Compare r16 to $11
...
ret ;Return from subroutine

MOVW Rd + 1:Rd,Rr + 1:Rrd ; Copy RegisterWord

d ∈ {0,2,...,30}, r ∈ {0,2,...,30} ; Rd + 1:Rd ← Rr + 1:Rr

This instruction makes a copy of one register pair into another register pair. The

source register pair Rr + 1:Rr is left unchanged, while the destination register pair Rd +

1:Rd is loaded with a copy of Rr + 1:Rr.

Flags: --- Cycles: 1

Example:
movw r17:16,r1:r0 ;Copy r1:r0 to r17:r16
call check ;Call subroutine
...

check: cpi r16,$11 ;Compare r16 to $11
...
cpi r17,$32 ;Compare r17 to $32
...
ret ;Return from subroutine

MUL Rd,Rr ; Multiply Unsigned

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; R1:R0 ← Rd × Rr(unsigned ← unsigned × unsigned)

This instruction performs 8-bit × 8-bit → 16-bit unsigned multiplication.

The multiplicand Rd and the multiplier Rr are two registers containing unsigned

numbers. The 16-bit unsigned product is placed in R1 (high byte) and R0 (low byte). Note

that if the multiplicand or the multiplier is selected from R0 or R1 the result will overwrite

those after multiplication.

Flags: Z, C. Cycles: 2

Example:
mul r5,r4 ;Multiply unsigned r5 and r4
movw r4,r0 ;Copy result back in r5:r4

MULS Rd,Rr ; Multiply Signed

16 ≤ d ≤ 31, 16 ≤ r ≤ 31 ; R1:R0 ← Rd × Rr(signed ← signed × signed)

This instruction performs 8-bit × 8-bit → 16-bit signed multiplication.

The multiplicand Rd and the multiplier Rr are two registers containing signed

numbers. The 16-bit signed product is placed in R1 (high byte) and R0 (low byte).

Flags: Z, C. Cycles: 2

Example:
muls r21,r20 ;Multiply signed r21 and r20
movw r20,r0 ;Copy result back in r21:r20

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 719

MULSU Rd,Rr ; Multiply Signed with Unsigned

16 ≤ d ≤ 31, 16 ≤ r ≤ 31 ; R1:R0 ← Rd × Rr (signed ← signed × unsigned)

This instruction performs 8-bit × 8-bit → 16-bit multiplication of a signed and an

unsigned number.

The multiplicand Rd and the multiplier Rr are two registers. The multiplicand Rd

is a signed number, and the multiplier Rr is unsigned. The 16-bit signed product is placed

in R1 (high byte) and R0 (low byte).

Flags: Z, C. Cycles: 2

Example:---

NEG Rd ; Two’s Complement

0 ≤ d ≤ 31 ; Rd ← $00 – Rd

Replaces the contents of register Rd with its two’s complement; the value $80 is

left unchanged.

Flags: H, S, V, N, Z, C. Cycles: 1

Example:
sub r11,r0 ;Subtract r0 from r11
brpl positive ;Branch if result positive
neg r11 ;Take two’s complement of r11

positive: nop ;Branch destination (do nothing)

NOP ; No Operation

This instruction performs a single-cycle No Operation.

Flags: ---. Cycles: 1

Example:
clr r16 ;Clear r16
ser r17 ;Set r17
out $18,r16 ;Write zeros to Port B
nop ;Wait (do nothing)
out $18,r17 ;Write ones to Port B

OR Rd,Rr ; Logical OR

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd OR Rr

Performs the logical OR between the contents of register Rd and register Rr and

places the result in the destination register Rd.

Flags: S, V ← 0, N, Z. Cycles: 1

Example:
or r15,r16 ;Do bitwise or between registers
bst r15,6 ;Store bit 6 of r15 in T flag
brts ok ;Branch if T flag set
...

ok: nop ;Branch destination (do nothing)

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 720

ORI Rd,K ; Logical OR with Immediate

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd ← Rd OR K

Performs the logical OR between the contents of register Rd and a constant and

places the result in the destination register Rd.

Flags: S, V ← 0, N, Z. Cycles: 1

Example:
ori r16,$F0 ;Set high nibble of r16
ori r17,1 ;Set bit 0 of r17

OUT A,Rr ; Store Register to I/O Location

0 ≤ r ≤ 31, 0 ≤ A ≤ 63 ; I/O(A) ← Rr

Stores data from register Rr in the register file to I/O space (ports, timers, config-

uration registers, etc.).

Flags: ---. Cycles: 1

Example:
clr r16 ;Clear r16
ser r17 ;Set r17
out $18,r16 ;Write zeros to Port B
nop ;Wait (do nothing)
out $18,r17 ;Write ones to Port B

POP Rd ; Pop Register from Stack

0 ≤ d ≤ 31 ; Rd ← STACK

This instruction loads register Rd with a byte from the STACK. The stack pointer

is pre-incremented by 1 before the POP.

Flags: ---. Cycles: 2

Example:
call routine ;Call subroutine
...

routine: push r14 ;Save r14 on the stack
push r13 ;Save r13 on the stack
...
pop r13 ;Restore r13
pop r14 ;Restore r14
ret ;Return from subroutine

PUSH Rr ; Push Register on Stack

0 ≤ d ≤ 31 ; STACK ← Rr

This instruction stores the contents of register Rr on the STACK. The stack point-

er is post-decremented by 1 after the PUSH.

Flags: ---. Cycles: 2

Example:
call routine ;Call subroutine
...

routine: push r14 ;Save r14 on the stack
push r13 ;Save r13 on the stack
...
pop r13 ;Restore r13
pop r14 ;Restore r14
ret ;Return from subroutine

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 721

RCALL k ; Relative Call to Subroutine

–2K ≤ k < 2K ; PC ← PC + k + 1

Relative call to an address within PC – 2K + 1 and PC + 2K (words). The return

address (the instruction after the RCALL) is stored onto the stack. (See also CALL.) In

the assembler, labels are used instead of relative operands. For AVR microcontrollers with

program memory not exceeding 4K words (8K bytes) this instruction can address the

entire memory from every address location. The stack pointer uses a post-decrement

scheme during RCALL.

Flags: ---. Cycles: 3

Example:
rcall routine ;Call subroutine
...

routine: push r14 ;Save r14 on the stack
...
pop r14 ;Restore r14
ret ;Return from subroutine

RET ; Return from Subroutine

Returns from subroutine. The return address is loaded from the stack. The stack

pointer uses a pre-increment scheme during RET.

Flags: ---. Cycles: 4

Example:
call routine ;Call subroutine
...

routine: push r14 ;Save r14 on the stack
...
pop r14 ;Restore r14
ret ;Return from subroutine

RETI ; Return from Interrupt

Returns from interrupt. The return address is loaded from the stack and the Global

Interrupt flag is set.

Note that the Status Register is not automatically stored when entering an inter-

rupt routine, and it is not restored when returning from an interrupt routine. This must be

handled by the application program. The stack pointer uses a pre-increment scheme dur-

ing RETI.

Flags: ---. Cycles: 4

Example:
...

extint: push r0 ;Save r0 on the stack
...
pop r0 ;Restore r0
reti ;Return and enable interrupts

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 722

RJMP k ; Relative Jump

–2K ≤ k < 2K ; PC ← PC + k + 1

Relative jump to an address within PC – 2K +1 and PC + 2K (words). In the

assembler, labels are used instead of relative operands. For AVR microcontrollers with

program memory not exceeding 4K words (8K bytes) this instruction can address the

entire memory from every address location.

Flags: ---. Cycles: 2

Example:
cpi r16,$42 ;Compare r16 to $42
brne error ;Branch if r16 not equal $42
rjmp ok ;Unconditional branch

error: add r16,r17 ;Add r17 to r16
inc r16 ;Increment r16

ok: nop ;Destination for rjmp (do nothing)

ROL Rd ; Rotate Left through Carry

0 ≤ d ≤ 31

Shifts all bits in Rd one place to the left. The C

flag is shifted into bit 0 of Rd. Bit 7 is shifted into the

C flag. This operation combined with LSL effectively

multiplies multibyte signed and unsigned values by

two.

Flags: H, S, V, N, Z, C. Cycles: 1

Example:
lsl r18 ;Multiply r19:r18 by two
rol r19 ;r19:r18 is a signed or unsigned word
brcs oneenc ;Branch if carry set
...

oneenc: nop ;Branch destination (do nothing)

ROR Rd ; Rotate Right through Carry

0 ≤ d ≤ 31

Shifts all bits in Rd one place to the right. The

C flag is shifted into bit 7 of Rd. Bit 0 is shifted into

the C flag. This operation combined with ASR effec-

tively divides multibyte signed values by two.

Combined with LSR, it effectively divides multibyte unsigned values by two. The Carry

flag can be used to round the result.

Flags: S, V, N, Z, C. Cycles: 1

Example:
lsr r19 ;Divide r19:r18 by two
ror r18 ;r19:r18 is an unsigned two-byte integer
brcc zeroenc1 ;Branch if carry cleared
asr r17 ;Divide r17:r16 by two
ror r16 ;r17:r16 is a signed two-byte integer
brcc zeroenc2 ;Branch if carry cleared
...

zeroenc1: nop ;Branch destination (do nothing)
...

zeroenc2: nop ;Branch destination (do nothing)

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 723

SBC Rd,Rr ; Subtract with Carry

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd – Rr – C

Subtracts two registers and subtracts with the C flag and places the result in the

destination register Rd.

Flags: H, S, V, N, Z, C. Cycles: 1

Example: ;Subtract r1:r0 from r3:r2
sub r2,r0 ;Subtract low byte
sbc r3,r1 ;Subtract with carry high byte

SBCI Rd,K ; Subtract Immediate with Carry

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd – K – C

Subtracts a constant from a register and subtracts with the C flag and places the

result in the destination register Rd.

Flags: H, S, V, N, Z, C. Cycles: 1

Example:
;Subtract $4F23 from r17:r16

subi r16,$23 ;Subtract low byte
sbci r17,$4F ;Subtract with carry high byte

SBI A,b ; Set Bit in I/O Register

0 ≤ A ≤ 31, 0 ≤ b ≤ 7 ; I/O(A,b) ← 1

Sets a specified bit in an I/O register. This instruction operates on the lower 32 I/O

registers.

Flags: ---. Cycles: 2

Example:
out $1E,r0 ;Write EEPROM address
sbi $1C,0 ;Set read bit in EECR
in r1,$1D ;Read EEPROM data

SBIC A,b ; Skip if Bit in I/O Register is Cleared

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; If I/O(A,b) = 0 then PC ← PC + 2 (or 3) else PC ← PC + 1

This instruction tests a single bit in an I/O register and skips the next instruction

if the bit is cleared. This instruction operates on the lower 32 I/O registers.

Flags:---. Cycles: 1/2/3

Example:
e2wait: sbic $1C,1 ;Skip next inst. if EEWE cleared

rjmp e2wait ;EEPROM write not finished
nop ;Continue (do nothing)

SBIS A,b ; Skip if Bit in I/O Register is Set

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; If I/O(A,b) = 1 then PC ← PC + 2 (or 3) else PC ← PC + 1

This instruction tests a single bit in an I/O register and skips the next instruction

if the bit is set. This instruction operates on the lower 32 I/O registers.

Flags: ---. Cycles: 1/2/3

Example:
waitset: sbis $10,0 ;Skip next inst. if bit 0 in Port D set

rjmp waitset ;Bit not set
nop ;Continue (do nothing)

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 724

SBIW Rd + 1:Rd,K ; Subtract Immediate from Word

d ∈ {24,26,28,30}, 0 ≤ K ≤ 63 ; Rd + 1:Rd ← Rd + 1:Rd – K

Subtracts an immediate value (0–63) from a register pair and places the result in

the register pair. This instruction operates on the upper four register pairs, and is well suit-

ed for operations on the pointer registers.

Flags: S, V, N, Z, C. Cycles: 2

Example:
sbiw r25:r24,1 ;Subtract 1 from r25:r24
sbiw YH:YL,63 ;Subtract 63 from the Y-pointer

SBR Rd,K ; Set Bits in Register

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd ← Rd OR K

Sets specified bits in register Rd. Performs the logical ORI between the contents

of register Rd and a constant mask K and places the result in the destination register Rd.

Flags: S,V←0, N, Z. Cycles: 1

Example:
sbr r16,3 ;Set bits 0 and 1 in r16
sbr r17,$F0 ;Set 4 MSB in r17

SBRC Rr,b ; Skip if Bit in Register is Cleared

0 ≤ r ≤ 31, 0 ≤ b ≤7 ; If Rr(b) = 0 then PC ← PC + 2 or 3 else PC ← PC + 1

This instruction tests a single bit in an I/O register and skips the next instruction if

the bit is set. This instruction operates on the lower 32 I/O registers.

Flags: --- Cycles: 1/2/3

Example:
sub r0,r1 ;Subtract r1 from r0
sbrc r0,7 ;Skip if bit 7 in r0 cleared
sub r0,r1 ;Only executed if bit7 in r0 not cleared
nop ;Continue (do nothing)

SBRS Rr,b ; Skip if Bit in Register is Set

0 ≤ r ≤ 31, 0 ≤ b ≤7 ; If Rr(b) = 1 then PC ← PC + 2 or 3 else PC ← PC + 1

This instruction tests a single bit in a register and skips the next instruction if the

bit is set.

Flags: H, S, V, N, Z, C. Cycles: 1/2/3

Example:
sub r0,r1 ;Subtract r1 from r0
sbrs r0,7 ;Skip if bit 7 in r0 set
neg r0 ;Only executed if bit 7 in r0 not set
nop ;Continue (do nothing)

SEC ; Set Carry Flag

; C ← 1

Sets the Carry flag (C) in SREG (Status Register).

Flags: C ← 1. Cycles: 1

Example:
sec ;Set Carry flag
adc r0,r1 ;r0=r0+r1+1

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 725

SEH ; Set Half Carry Flag

; H ← 1

Sets the Half Carry (H) in SREG (Status Register).

Flags: H ← 1. Cycles: 1

Example:
seh ;Set Half Carry flag

SEI ; Set Global Interrupt Flag

; I ← 1

Sets the Global Interrupt flag (I) in SREG (Status Register). The instruction fol-

lowing SEI will be executed before any pending interrupts.

Flags: I ← 1. Cycles: 1

Example:
sei ;Set global interrupt enable
sec ;Set Carry flag
;Note: will set Carry flag before any pending interrupt

SEN ; Set Negative Flag

; N ← 1

Sets the Negative flag (N) in SREG (Status Register).

Flags: N ← 1. Cycles: 1

Example:
add r2,r19 ;Add r19 to r2
sen ;Set Negative flag

SER Rd ; Set all Bits in Register

16 ≤ d ≤ 31 ; Rd ← $FF

Loads $FF directly to register Rd.

Flags: ---. Cycles: 1

Example:
ser r17 ;Set r17
out $18,r17 ;Write ones to Port B

SES ; Set Signed Flag

; S ← 1

Sets the Signed flag (S) in SREG (Status Register).

Flags: S ← 1. Cycles: 1

Example:
add r2,r19 ;Add r19 to r2
ses ;Set Negative flag

SET ; Set T Flag

; T ← 1

Sets the T flag in SREG (Status Register).

Flags: T ← 1. Cycles: 1

Example:
set ;Set T flag

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 726

SEV ; Set Overflow Flag

; V ← 1

Sets the Overflow flag (V) in SREG (Status Register).

Flags: V ← 1. Cycles: 1

Example:
sev ;Set Overflow flag

SEZ ; Set Zero Flag

; Z ← 1

Sets the Zero flag (Z) in SREG (Status Register).

Flags: Z ← 1. Cycles: 1

Example:
sez ;Set Z flag

SLEEP

This instruction sets the circuit in sleep mode defined by the MCU control regis-

ter.

Flags: ---. Cycles: 1

Example:
mov r0,r11 ;Copy r11 to r0
ldi r16,(1<<SE) ;Enable sleep mode
out MCUCR, r16
sleep ;Put MCU in sleep mode

SPM ; Store Program Memory

SPM can be used to erase a page in the program memory, to write a page in the

program memory (that is already erased), and to set Boot Loader Lock bits. In some

devices, the program memory can be written one word at a time, in other devices an entire

page can be programmed simultaneously after first filling a temporary page buffer. In all

cases, the program memory must be erased one page at a time. When erasing the program

memory, the RAMPZ and Z-register are used as page address. When writing the program

memory, the RAMPZ and Z-register are used as page or word address, and the R1:R0 reg-

ister pair is used as data(1). When setting the Boot Loader Lock bits, the R1:R0 register

pair is used as data.

Refer to the device documentation for detailed description of SPM usage. This

instruction can address the entire program memory.

Flags: ---. Cycles: depends on the operation

Syntax: Operation: Comment:

(i) SPM (RAMPZ:Z) ← $ffff Erase program memory page

(ii) SPM (RAMPZ:Z) ← R1:R0 Write program memory word

(iii) SPM (RAMPZ:Z) ← R1:R0 Write temporary page buffer

(iv) SPM (RAMPZ:Z) ← TEMP Write temporary page buffer

to program memory

(v) SPM BLBITS ← R1:R0 Set Boot Loader Lock bits

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 727

ST ; Store Indirect From Register to Data Space

; using Index X

Stores one byte indirect from a register to data space. For parts with SRAM, the

data space consists of the register file, I/O memory, and internal SRAM (and external

SRAM if applicable). For parts without SRAM, the data space consists of the register file

only. The EEPROM has a separate address space.

The data location is pointed to by the X (16 bits) pointer register in the register

file. Memory access is limited to the current data segment of 64K bytes. To access anoth-

er data segment in devices with more than 64K bytes data space, the RAMPX register in

the I/O area has to be changed.

The X-pointer register can either be left unchanged by the operation, or it can be

post-incremented or pre-decremented.These features are especially suited for accessing

arrays, tables, and stack pointer usage of the X-pointer register. Note that only the low

byte of the X-pointer is updated in devices with no more than 256 bytes data space. For

such devices, the high byte of the pointer is not used by this instruction and can be used

for other purposes. The RAMPX register in the I/O area is updated in parts with more than

64K bytes data space or more than 64K bytes program memory, and the increment/ decre-

ment is added to the entire 24-bit address on such devices.

Flags: ---. Cycles: 2

Syntax: Operation: Comment:

(i) ST X, Rr (X) ← Rr X: Unchanged

(ii) ST X+, Rr (X) ← Rr X ← X + 1 X: Postincremented

(iii) ST –X, Rr X ← X – 1 (X) ← Rr X: Predecremented

Example:
clr r27 ;Clear X high byte
ldi r26,$60 ;Set X low byte to $60
st X+,r0 ;Store r0 in data space loc. $60(X post inc)
st X,r1 ;Store r1 in data space loc. $61
ldi r26,$63 ;Set X low byte to $63
st X,r2 ;Store r2 in data space loc. $63
st -X,r3 ;Store r3 in data space loc. $62(X pre dec)

ST (STD) ; Store Indirect From Register to Data Space

; using Index Y

Stores one byte indirect with or without displacement from a register to data space.

For parts with SRAM, the data space consists of the register file, I/O memory, and inter-

nal SRAM (and external SRAM if applicable). For parts without SRAM, the data space

consists of the register file only. The EEPROM has a separate address space.

The data location is pointed to by the Y (16 bits) pointer register in the register file.

Memory access is limited to the current data segment of 64K bytes. To access another data

segment in devices with more than 64K bytes data space, the RAMPY register in the I/O

area has to be changed.

The Y-pointer register can either be left unchanged by the operation, or it can be

post-incremented or pre-decremented. These features are especially suited for accessing

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 728

arrays, tables, and stack pointer usage of the Y-pointer register. Note that only the low byte

of the Y-pointer is updated in devices with no more than 256 bytes data space. For such

devices, the high byte of the pointer is not used by this instruction and can be used for

other purposes. The RAMPY register in the I/O area is updated in parts with more than

64K bytes data space or more than 64K bytes program memory, and the increment/ decre-

ment/displacement is added to the entire 24-bit address on such devices.

Flags: ---. Cycles:2

Syntax: Operation: Comment:

(i) ST Y, Rr (Y) ← Rr Y: Unchanged

(ii) ST Y+, Rr (Y) ← Rr Y ← Y + 1 Y: Postincremented

(iii) ST –Y, Rr Y ← Y – 1 (Y) ← Rr Y: Predecremented

(iiii) STD Y + q, Rr (Y + q) ← Rr Y: Unchanged

q: Displacement

Example:

clr r29 ;Clear Y high byte
ldi r28,$60 ;Set Y low byte to $60
st Y+,r0 ;Store r0 in data space loc. $60 (Y postinc.)
st Y,r1 ;Store r1 in data space loc. $61
ldi r28,$63 ;Set Y low byte to $63
st Y,r2 ;Store r2 in data space loc. $63
st -Y,r3 ;Store r3 in data space loc. $62 (Y predec.)
std Y+2,r4 ;Store r4 in data space loc. $64

ST (STD) ; Store Indirect From Register to Data Space using Index Z

Stores one byte indirect with or without displacement from a register to data space.

For parts with SRAM, the data space consists of the register file, I/O memory, and inter-

nal SRAM (and external SRAM if applicable). For parts without SRAM, the data space

consists of the register file only. The EEPROM has a separate address space.

The data location is pointed to by the Z (16 bits) pointer register in the register file.

Memory access is limited to the current data segment of 64K bytes. To access another data

segment in devices with more than 64K bytes data space, the RAMPZ register in the I/O

area has to be changed.

The Z-pointer register can either be left unchanged by the operation, or it can be

post-incremented or pre-decremented. These features are especially suited for stack point-

er usage of the Z-pointer register; however, because the Z-pointer register can be used for

indirect subroutine calls, indirect jumps and table lookup, it is often more convenient to

use the X or Y-pointer as a dedicated stack pointer. Note that only the low byte of the Z-

pointer is updated in devices with no more than 256 bytes data space. For such devices,

the high byte of the pointer is not used by this instruction and can be used for other pur-

poses. The RAMPZ register in the I/O area is updated in parts with more than 64K bytes

data space or more than 64K bytes program memory, and the increment/decrement/dis-

placement is added to the entire 24-bit address on such devices.

Flags: ---. Cycles: 2

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 729

Syntax: Operation: Comment:

(i) ST Z, Rr (Z) ←Rr Z: Unchanged

(ii) ST Z+, Rr (Z) ← Rr Z ← Z + 1 Z: Postincremented

(iii) ST –Z, Rr Z ← Z – 1 (Z) ← Rr Z: Predecremented

(iiii) STD Z + q, Rr (Z + q) ← Rr Z: Unchanged,

q: Displacement

Example:
clr r31 ;Clear Z high byte
ldi r30,$60 ;Set Z low byte to $60
st Z+,r0 ;Store r0 in data space loc. $60 (Z postinc.)
st Z,r1 ;Store r1 in data space loc. $61
ldi r30,$63 ;Set Z low byte to $63
st Z,r2 ;Store r2 in data space loc. $63
st -Z,r3 ;Store r3 in data space loc. $62 (Z predec.)
std Z+2,r4 ;Store r4 in data space loc. $64

STS k,Rr ; Store Direct to Data Space

0 ≤ r ≤ 31, 0 ≤ k ≤ 65535 ; (k) ← Rr

Stores one byte from a register to the data space. For parts with SRAM, the data

space consists of the register file, I/O memory, and internal SRAM (and external SRAM

if applicable). For parts without SRAM, the data space consists of the register file only.

The EEPROM has a separate address space.

A 16-bit address must be supplied. Memory access is limited to the current data

segment of 64K bytes. The STS instruction uses the RAMPD register to access memory

above 64K bytes. To access another data segment in devices with more than 64K bytes

data space, the RAMPD register in the I/O area has to be changed.

Flags:---. Cycles: 2

Example:
lds r2,$FF00 ;Load r2 with the contents of location $FF00
add r2,r1 ;Add r1 to r2
sts $FF00,r2 ;Write back

SUB Rd,Rr ; Subtract without Carry

0 ≤ d ≤ 31, 0 ≤ r ≤ 31 ; Rd ← Rd – Rr

Subtracts two registers and places the result in the destination register Rd.

Flags: H, S, V, N, Z, C. Cycles: 1

Example:
sub r13,r12 ;Subtract r12 from r13
brne noteq ;Branch if r12 not equal r13
...

noteq: nop ;Branch destination (do nothing)

SUBI Rd,K ; Subtract Immediate

16 ≤ d ≤ 31, 0 ≤ K ≤ 255 ; Rd ← Rd – K

Subtracts a register and a constant and places the result in the destination register

Rd. This instruction works on registers R16 to R31 and is very well suited for operations

on the X, Y, and Z-pointers.

Flags: H, S, V, N, Z, C. Cycles: 1

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 730

Example:
subi r22,$11 ;Subtract $11 from r22
brne noteq ;Branch if r22 not equal $11
...

noteq: nop ;Branch destination (do nothing)

SWAP Rd ; Swap Nibbles

0 ≤ d ≤ 31 ; R(7:4) ← Rd(3:0), R(3:0) ← Rd(7:4)

Swaps high and low nibbles in a register.

Flags:---. Cycles: 1

Example:
inc r1 ;Increment r1
swap r1 ;Swap high and low nibble of r1
inc r1 ;Increment high nibble of r1
swap r1 ;Swap back

TST Rd ; Test for Zero or Minus

0 ≤ d ≤ 31 ; Rd ← Rd • Rd

Tests if a register is zero or negative. Performs a logical AND between a register

and itself. The register will remain unchanged.

Flags: S, V ← 1, N, Z. Cycles: 1

Example:
tst r0 ;Test r0
breq zero ;Branch if r0=0
...

zero: nop ;Branch destination (do nothing)

WDR ; Watchdog Reset

This instruction resets the watchdog timer. This instruction must be executed with-

in a limited time given by the WD prescaler.

Flags:---. Cycles: 1

Example:
wdr ;Reset watchdog timer

APPENDIX A: AVR INSTRUCTIONS EXPLAINED 731

SECTION A.3: AVR REGISTER SUMMARY

The AVR Microcontroller & Embedded Systems (Mazidi & Naimi) 732

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$3F ($5F) SREG I T H S V N Z C

$3E ($5E) SPH – – – – SP11 SP10 SP9 SP8

$3D ($5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

$3C ($5C) OCR0 Timer/Counter0 Output Compare Register

$3B ($5B) GICR INT1 INT0 INT2 – – – IVSEL IVCE

$3A ($5A) GIFR INTF1 INTF0 INTF2 – – – – –

$39 ($59) TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0

$38 ($58) TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0

$37 ($57) SPMCR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN

$36 ($56) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

$35 ($55) MCUCR SE SM2 SM1 SM0 ISC11 ISC10 ISC01 ISC00

$34 ($54) MCUCSR JTD ISC2 – JTRF WDRF BORF EXTRF PORF

$33 ($53) TCCR0 FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00

$32 ($52) TCNT0 Timer/Counter0 (8 Bits)

$31 ($51)
OSCCAL Oscillator Calibration Register

OCDR On-Chip Debug Register

$30 ($50) SFIOR ADTS2 ADTS1 ADTS0 – ACME PUD PSR2 PSR10

$2F ($4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10

$2E ($4E) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10

$2D ($4D) TCNT1H Timer/Counter1 – Counter Register High Byte

$2C ($4C) TCNT1L Timer/Counter1 – Counter Register Low Byte

$2B ($4B) OCR1AH Timer/Counter1 – Output Compare Register A High Byte

$2A ($4A) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte

$29 ($49) OCR1BH Timer/Counter1 – Output Compare Register B High Byte

$28 ($48) OCR1BL Timer/Counter1 – Output Compare Register B Low Byte

$27 ($47) ICR1H Timer/Counter1 – Input Capture Register High Byte

$26 ($46) ICR1L Timer/Counter1 – Input Capture Register Low Byte

$25 ($45) TCCR2 FOC2 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20

$24 ($44) TCNT2 Timer/Counter2 (8 Bits)

$23 ($43) OCR2 Timer/Counter2 Output Compare Register

$22 ($42) ASSR – – – – AS2 TCN2UB OCR2UB TCR2UB

$21 ($41) WDTCR – – – WDTOE WDE WDP2 WDP1 WDP0

$20 ($40)
UBRRH URSEL – – – UBRR[11:8]

UCSRC URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL

$1F ($3F) EEARH – – – – – – EEAR9 EEAR8

$1E ($3E) EEARL EEPROM Address Register Low Byte

$1D ($3D) EEDR EEPROM Data Register

$1C ($3C) EECR – – – – EERIE EEMWE EEWE EERE

$1B ($3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0

$1A ($3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0

$19 ($39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0

$18 ($38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0

$17 ($37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0

$16 ($36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

$15 ($35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0

$14 ($34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0

$13 ($33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

$12 ($32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0

$11 ($31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0

$10 ($30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

$0F ($2F) SPDR SPI Data Register

$0E ($2E) SPSR SPIF WCOL – – – – – SPI2X

$0D ($2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

$0C ($2C) UDR USART I/O Data Register

$0B ($2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM

$0A ($2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8

$09 ($29) UBRRL USART Baud Rate Register Low Byte

$08 ($28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0

$07 ($27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0

$06 ($26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

$05 ($25) ADCH ADC Data Register High Byte

$04 ($24) ADCL ADC Data Register Low Byte

$03 ($23) TWDR Two-wire Serial Interface Data Register

$02 ($22) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 TWA1 TWA0 TWGCE

$01 ($21) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 – TWPS1 TWPS0

$00 ($20) TWBR Two-wire Serial Interface Bit Rate Register

